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ABSTRACT 

Soybean oil (SBO) is an oxidatively unstable oil, largely because of the high 

concentration of linoleic acid (18:2) and linolenic acid (18:3). The unsaturated fatty acids, 

oleic acid (18:1), 18:2, and 18:3 in SBO oxidize in a ratio of 1: 10.3: 21.6. To improve 

oxidative and flavor stability, the SBO may be hydrogenated to reduce the concentration of 

PUFA (and increase the saturated FA); however, frona fatty acids (fFA) are formed and 

saturated fatty acids are increased during this process. There are health concerns over the 

consumption of a diet high in trans F As and high in the ratio of saturated fatty acids to 

PUFA. Lowering the 18:3 content to a level similar to that obtained by partial hydrogénation, 

but without franj formation and increasing saturation has been objectives of plant breeders. 

A diet high in monounsaturated has been shown to help reduce health risks. Elevating 18:1 in 

seed oils has become more and more common. 

The objectives of this study were to 1) study the effects of two low levels of 18:3 

concentration (-1.0% and 2.2%) on the oxidative and flavor stabilities of SBO and 2) 

determine the optimum percentage of oleic acid (OA) in six SBOs (including high-oleic SBO 

(79%OA), conventional SBO(control), three blended oils containing 36.9%, 50.7%, and 

64.7% OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively, and a low-linolenic 

(LL, contained 1.4% linolenic acid) SBO, to obtain maximum frying stability while retaining 

good flavor potential. 

In general, results of the storage study suggested that the SBO containing 1.0% 18:3 

had generally significant better oxidative and flavor stability during storage at 21 and 32°C 
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than did SBO contained 2.2% 18:3. Results of the frying study suggested that the order of 

oxidative stability of the six oil treatments was: 79%OA > 65%OA > 51%OA > LL > 

37%OA > Control, and that the order of flavor stability and eating quality of foods fried in 

them was: LL > 79%OA > 65%-OA > 51%-OA > 37%-OA > Control. 

These findings should help soybean breeders more precisely decide compositional 

targets to produce SBO that have desirable properties. 



www.manaraa.com

1 

GENERAL INTRODUCTION 

Since the 1980s, public health advice on diets for prevention of coronary heart disease 

(CHD), and therapeutic diets for the treatment of these cardiac patients, has recommended 

the consumption of low-fat diets with high polyunsaturated (PUFA) to saturated fatty acid 

(SPA) ratios. As a result, the consumption of vegetable oils, such as soybean oil (SBO), has 

increased over animal fats known to contain cholesterol and high amounts of SFAs (1). 

However, SBO has poor oxidative stability and its flavor deterioration presents challenges to 

the food oil industry. 

The process of catalytic hydrogénation of vegetable oils was discovered in 1897 to 

reduce the PUFA and to improve flavor stability, versatility and performance of vegetable 

oils in salad dressings, during cooking, in deep-fat-frying, and for margarines, shortenings, 

and other baking and snack food applications (2). However, another important factor in 

hydrogénation is the formation of positional and geometrical isomers. Formation of trans 

isomers is rapid and extensive (3). In the United States, hydrogenated soybean oil (HSBO) is 

the primary dietary source of fatty acid isomers, because about 90% of the hydrogenated 

vegetable oil produced is HSBO (4). The estimated frana F As intake by typical U.S. 

consumers is 11.1 to 27.6 g/person/day (5). A comprehensive review concluded that fronj 

F As consumed at 4.0% or more of total calories may raise plasma lipid levels (6). Because of 

health concerns over the presence of fra/u F As in our diet, modifying fatty acid composition 

of SBO to improve its oxidative and flavor stability as obtained by hydrogénation, but 

without ffww formation, has been an objective of plant breeders. 



www.manaraa.com

2 

Studies have shown that the oxidation rate of oleic acid (OA, 18:1) is much slower 

than that of the PUFA, linoleic (18:2) and linolenic (18:3), which oxidize quickly and are the 

major contributors for the poor stability of SBO (7, 8). Therefore, trends in oilseed breeding 

have been to create oilseed crop producing specialty oil in which a particular fatty acid 

predominates or diminishes with its own targeted industrial application and market value (9, 

10). For example, (1) a low-saturated oil, such as low-palmitic acid SBO, is aimed at meeting 

consumers' dietary needs for less saturated fatty acids for better health; (2) a high-saturated 

oil, such as high-stearic or high-palmitic acid SBO, has improved stability and is suitable for 

making low to zero franj margarine and shortening for health-conscious consumers; (3) a 

low-linolenic aicd oil is aimed at increasing flavor and oxidative stability; (4) a high-oleic 

acid oil (low-saturated and low-linolenic acid) oil is aimed at improving both stability and a 

healthful image. 

The overall objective of current study was to determine the oxidative, flavor and heat 

stabilities of SBO with modified FA composition and the resultant quality in foods processed 

using SBO with modified fatty acid compositions through conventional plant breeding. The 

long-term goal is to aid oil-seed breeders, food-product manufacturers, and consumers 

through the development of better and more healthful vegetable oils. These goals have been 

accomplished by completing two separate, but related, projects. 

In the first project, the objective was to evaluate the effects of 18:3 concentration, 

combined with TBHQ addition, temperature, and storage time, on the oxidative and flavor 

stabilities of SBO during storage under light. In the second project, the frying stability of six 

SBO treatments including Control (conventional SBO containing 21.5% OA), LL (low-

linolenic acid SBO containing 1.4% 18:3 and 25.3% OA), three blended oils of Control with 
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high OA SBO at different ratios to result in oils of 37% OA, 51% OA, 65% OA, and 79%OA 

(high OA SBO containing 79.0% OA), respectively, were studied. One objective of this 

second project was to determine the optimum percentage of oleic acid (OA) in SBOs that 

could be achieved by blending high-oleic (HO, 79% OA) and conventional SBO (21.5% OA) 

to obtain maximum frying stability while retaining good flavor potential and quality in fried 

food. It is a common belief that the blended oils can be only as stable as the "poorest" oil. A 

second objective was to determine the impact of blending a relatively unstable control SBO 

with a highly stable HO SBO on the frying stability of the blended oils. 

Dissertation organization 

This dissertation is composed of a general introduction, a literature review, four 

papers, and a general conclusion. Discussed in the literature review are the pathways of lipid 

oxidation, lipid oxidation products and their significances, factors affecting fat and oil 

stability and quality, measures to improve oil and fat stability and quality including 

hydrogénation, modification of fatty acid composition of oil-seed through plant breeding and 

use of antioxidants. The first of the four papers was published in the Journal of the American 

Oil Chemists' Society in February of 2003. The second was submitted to the journal and is 

being reviewed. The last two papers will be submitted to the same journal for publication 

soon. Following the fourth paper are general conclusions and a list of references cited in the 

general introduction and literature review. 
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LITERATURE REVIEW 

Lipid Oxidation 

Autoxidation Extensive work has been done to clarify the mechanism of lipid 

oxidation and it is widely agreed that "autoxidation" is the most common reaction involved 

(11, 12, 13, 14). Autoxidation is a spontaneous reaction catalyzed by light, heat and metals 

and involving the incorporation of molecular oxygen with unsaturated fatty acids to produce 

hydroperoxides. Autoxidation is, in most instances, a free radical (a free radical is a molecule 

with unshared valence electron) chain reaction that includes three steps: initiation, 

propagation and termination (15, 16). 

Initiation: RH -» R* + H* Eq. 1 

Or: ROOM -» RO* + *OH Eq. 2 

RO® + RH —> ROH + R* Eq. 3 

In the initiation step, the formation of the first free radicals may take place by thermal 

dissociation (thermolysis), by hydroperoxide decomposition, by metal catalysis and by 

exposure to light (photolysis, initiated by UV-catalyzed decomposition of peroxides and 

hydroperoxides) with or without photosensitizes. An induction period (time before rapid 

oxidation occurs) is usually observed in lipid oxidation at the very beginning when the oil is 

subjected to oxidative stress to create the very first free radicals. 

Propagation: •R* + O2 —> ROO* Eq. 4 

ROO*+ RH -> ROOH + R# 

I 
Net: RH + Oz -> ROOH Eq. 5 
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Once the initial free radicals are generated, they capture molecular oxygen and form 

peroxy radicals (ROO*). Then the peroxy radicals in turn can abstract a hydrogen from 

unsaturated fatty acids to produce a hydroperoxide and the free radical initially generated. 

This free radical repeats the same reaction just described and the reaction may be repeated up 

to several thousand times having the nature of a chain reaction. As more hydroperoxides 

accumulate and decompose to free radicals, this reaction occurs at an accelerated rate. The 

net reaction of the propagation process (Eq. 5) is the consumption of unsaturated fatty acids 

with oxygen and the production of hydroperoxides - the primary oxidation products. 

For unsaturated fatty acids, the susceptibility to oxidation is dependent on their 

relative ease to donate a hydrogen for the reaction with peroxy radicals. The free radicals are 

usually formed at the a positions to double bonds because the bonding energy of the 

hydrogen atoms at these sites is less and the hydrogen at these sites can be more easily 

removed by peroxy radicals (Figure 1). The unshared valence electron of the fatty acid free 

radical formed may delocalize to a resonance structure and be represented by a structure with 

C O ClCHg )g 

R 

a-methylenic carbon (oxidation 
site) and double-bond linkage R 

Figure 1. Oxidation sites on unsaturated FA in a triacylglyceride (TAG) molecule. R = FA 
groups. 
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a partial free radical at each end of the allylic system (Figure 2). Reaction of oxygen 

occurs at end carbon positions of the allylic system to produce a mixture of isomeric 

hydroperoxides (15). 

e 

ROO# + R—CHz—CH=CB—R' -4 R—CH—CH=CH—R' + ROOH 

R—CM—CH—Ct&—R' 
8- & 

iOi 
R—CH(00»)—CH=Ctt—R' or R—CH=0^-CH(00#)—R' 

iRH 
R—CH—CH=CH—R' or R—CH=CFk-CH—R' 

i I 
o o 
H H 

Figure 2. The mechanism of the formation of the mixture of isomeric hydroperoxides. 

The propagation can be followed by termination if the free radicals react with 

themselves to yield nonreactive products. 

Termination: R* + R» —> R—R 

R® + ROO® —> ROOR 

ROO* + ROO® —> ROOR + O2 — 

Nonradical products Eq. 6 

Photooxidation Another important pathway for the formation of allylic hydroperoxides 

from unsaturated fats is by exposure to light in the presence of oxygen and a sensitizer. 

Molecular oxygen in the ground state exists in three closely grouped energy states when 

placed in a magnetic field. Such a state is called a triplet state and is not very reactive with 

unsaturated compounds. The activation of triplet oxygen by electronic excitation forms 

singlet oxygen (single energy state in a magnetic field), which reacts readily with unsaturated 
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fatty acids. Singlet oxygen can be generated in a great variety of ways as reviewed by 

Korycka-Dahl (17). The most important way is by exposure to light in the presence of a 

photosensitizer. Two mechanisms have been postulated for the photooxidation of unsaturated 

fatty acids (15, 18, 19). In general, olefins undergo photosensitized oxidation by a 

mechanism in which the sensitizer in the triplet state is excited by visible light energy to the 

singlet state followed by an intersystem crossing to an activated triplet state (Figure 3, 

mechanism I). Energy is then transferred from the activated triplet sensitizer to triplet oxygen 

to give singlet oxygen, which reacts readily with double bonds of unsaturated fatty acids by 

concerted addition, the so called "ene" reaction. In another postulated mechanism, the triplet 

sensitizer forms a sensitizer-oxygen complex that reacts with a substrate acceptor 

(unsaturated fatty acids in this case) to give a peroxide and which regenerates the sensitizer. 

(Figure 3, mechanism II). 

hv 
Mechanism I: Sens —> 'Sens ^ ^Sens* 

3Sens* —» '02 + 'Sens 

'O2 + RH —> ROOH (RH = fatty acid acceptor) Eq. 7 

Sens -» 'Sens /\/\/ ^Sens* 

Sens* + ^O? -» '[Sens-Oz] 

'[Sens-O;] + RH -» ROOH + Sens Eq. 8 

Figure 3. Mechanisms of photosensitized oxidation (15). 

Mechanism H: hv 
Sens -> 

3 c  *  . 3 n  .  I  

Oxygen is known to be much more soluble in lipids and nonpolar solvents than in 

water (20), which would provide the source for singlet oxygen formation. Vegetable oils 



www.manaraa.com

8 

frequently contain natural photosensitizers, such as chlorophylls and/or pheophytins in 

refined vegetable oils, are known to be efficient photosensitizers which yield singlet oxygen 

in the presence of visible light. Singlet oxygen is a highly electrophilic species and reacts 

readily with moieties containing high densities of electrons, such as the double bonds of 

unsaturated fatty acids. For example, singlet oxygen reacted with methyl linoleate at a rate of 

at least 1500 times faster than normal triplet oxygen (20). It was, therefore, concluded that 

singlet oxygen may play an important role in initiating the free radical autoxidation of 

unsaturated fats, if one starts with a completely peroxide-free vegetable oil. Once the reaction 

is initiated by singlet oxygen, the hydroperoxides decompose to yield free radicals, and the 

mode quickly becomes autocatalytic in the presence of triplet oxygen. A study by Carlsson et 

al. (21 ) found that the photooxidation of various unsaturated vegetable oils was not retarded 

by known free-radical scavengers, but were retarded by compounds known to quench singlet 

oxygen. Furthermore, the degree of retardation apparently paralleled the singlet oxygen 

quenching ability of these compounds. 

Thermal oxidation Commonly, the fatty acids in food lipids are exposed to heat during 

processing, and also during cooking, baking, frying, broiling, roasting, canning, 

concentrating, pasteurizing, drying, etc. Great care should be taken during these processes to 

minimize thermal oxidation reactions of fats and oils. Thermal reactions are of extreme 

importance to both consumers and the processors because of their significance to physical 

and chemical properties and flavor of the foods, nutrition, and toxicity to consumers. 

At elevated temperatures, fats and oils can undergo a series of reactions including 

autooxidative, thermolytic and oxidative polymerization reactions (22). The chemistry of 
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lipid oxidation is further complicated by the fact that in the presence of air, both thermolytic 

and oxidative events are superimposed at elevated temperatures. 

Not surprisingly, heat treatment such as commercial and household frying, accelerates 

autoxidation, which has essentially the same pathway as autoxidation at low-temperature, 

i.e., via the formation and decomposition of hydroperoxide intermediates, which are 

predictable according to the location and number of the double bonds (22). But at 

temperatures higher than 80 °C, isolation or quantitation of hydroperoxide intermediates is 

difficult because they decompose very rapidly. In a study by Lomanno (23), the net peroxide 

values were 80 and 0 meq/kg, respectively, after heating ethyl linolenate system for only 30 

min at 180 and 250 °C, respectively. 

In addition to undergoing autoxidation, when fats are heated in the presence of 

moisture, as often in the case in food applications, fatty acids are released via hydrolysis of 

the ester linkages, a reaction requiring a molecule of water for each ester group (22). The free 

fatty acids can accelerate oxidation of the oil. During heat treatment, dimeric and cyclic 

compounds formation appears to be the predominant thermolytic reaction of unsaturated fatty 

acids. The mechanism has been explained on the basis of the formation and/or combination 

of free radicals resulting from hemolytic cleavage of C-C linkages near the double bond. 

Dimeric and cyclic reaction also can occur via Diels-Alder reactions (i.e., reactions between 

a double bond and a conjugated diene to produce a tetra-substituted cyclohexene). In the 

presence of oxygen during heat treatment, however, oxidative polymerization also can occur. 

The alkyl hydroperoxides (ROOH) and dialkyl hydroperoxides (ROOR) formed by 

autoxidation can readily decompose to form oxy- and peroxy- radicals. Radical combination 

of such species, addition to double bonds, and allylic hydrogen abstraction leads to the 
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formation of oxydimers or polymers possessing hydroperoxide, hydroxide, epoxide and 

carbonyl groups, as well as ether and peroxide bridges (22). Obviously, temperature, heating 

time and availability of oxygen, etc. can largely influence the extent to which these thermal 

and oxidative polymerization reactions occur. 

Enzymatic oxidation Enzymes native to plants and animals can initiate oxidation 

reactions. The most important and best known of these enzymes is lipoxygenase 

(linoleate:oxygen oxidoreductase, E C. 1.13.11.12) (LOX), the name of a widely occurring 

group of enzymes found in most plants and animals (3, 24). Enzymatic oxidations in plant 

systems are mediated by lipoxygenases that use molecular oxygen to catalyze the oxidation 

of lipids containing a cis, cis-1,4-pentadiene group, such as that present in linoleic and 

linolenic acid. The reaction leads to the formation of hydroperoxides, same isomers as those 

formed during autoxidation of linoleate and linolenate. In particular, the activity of three 

soybean lipoxygenase isozymes, LOX-1, LOX-2, and LOX-3, is greatly associated with the 

development of off-flavors, especially green-beany flavors, in soybean products (24). In 

animal systems, lipoxygenases catalyze mainly the oxidative transformation of arachidonic 

acid to prostaglandins, thromboxanes, and leukotrienes found in all mammalian tissues and 

having a broad range of biological activities (3). 

Lipid Oxidation Products and Their Significances 

Primary oxidation products Monohydroperoxides are the primary products of lipid 

oxidation. A variety of hydroperoxides with positional and geometrical isomers are formed 

depending on the position and number of double bonds of the unsaturated fatty acids and the 
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oxidation mechanism. A number of reviews have been published on the composition of 

isomeric hydroperoxides formed from oxidation of oleate, linoleate, and linolenate (8, 15, 25, 

26, 27, 28). From methyl oleate, hydroperoxides with a peroxy group at the positions of 8-, 

9-, 10-, and 11- from autoxidation, and at the positions of 9- and 10- from photooxidation 

were observed. From methyl linoleate, hydroperoxides with a peroxy group at the positions 

of 9- and 13- from autoxidation, and at the positions of 9-, 10-, 12- and 13- from 

photooxidation were observed. From methyl linolenate, hydroperoxides with a peroxy group 

at the positions of 9-, 12-, 13-, and 16- from autoxidation, and at the positions of 9-, 10-, 12-, 

13-, 15-, and 16- from photooxidation were observed. The hydroperoxides thus formed are 

odorless but they are relatively unstable and are the most important precursors of a variety of 

volatile and nonvolatile secondary products that are important to the flavor stability, physical 

and chemical properties of SBO in food applications, and to the nutrition and toxicology 

values for the consumers. 

Secondary volatile oxidation products Illustrated by Figure 4 (15, 26, 27) are the 

pathways of hydroperoxide decomposition and the corresponding products. The first step of 

hydroperoxide decomposition is the homolytic cleavage of the O-O bond (i) to 

(ii) 
-> R-CH=CH* + R'-CHO 

O o* 
-» R-CH=CH-CHO + R'* 

(iii) 

O 

H 
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R-CH=CH# + #0H [R-CH=CH-OH] -4 R-CH2-CHO 

+ ®H —> R-CH=CH; 

+ O2 , [R-CH=CH-OOH] R-CH2-CHO 

» R-C=CH + H* Eq. 9 

R* + #OH R'-OH 

+ *H ^ R'-H 

+ O2 H*_ R'-OOH Eq.10 

Figure 4. Hydroperoxides decomposition pathways and the secondary volatile products 

yield alkoxy and hydroxy radicals. The homolytic (3-scission of the C-C bonds (ii) and (iii) of 

the alkoxy radical leads to two types of aldehydes, an olefin and an alkyl radical, which are 

the most important free radical reactions leading to breakdown products causing flavor 

deterioration in fats. The olefin radical formed would be expected to be very reactive and 

unstable. Further reactions (Eq. 9) may produce aldehydes and alkanes, alkenes, and alkynes. 

The alkyl radical can undergo similar reactions (Eq. 10) to produce alcohols, hydrocarbons or 

hydroperoxides. These products can participate in further reactions. 

Of these products, volatile products including 2-undecenal, 2-decenal, octanal, 

nonanal, decanal, heptane, octane, heptanal, 1-heptanol, 1-octanal, 2-nonenal, aldehyde 

esters, and fatty esters have been identified from decomposition studies with heated methyl 

oleate hydroperoxides; hexanal, 2,4-decadienal, 2-heptenal, 2-pentylfiiran, acetaldehyde, 

pentanal, 1-pentanol, l-octen-3-ol, 2-octenal, 2-nonenal, 2,4-nonadienal, esters, a series of C, 

to C5 hydrocarbons, substituted dioxolanes, ketones, lactones and acids from methyl linoleate 

hydroperoxides; acrolein, propanal, 2-/3-hexenal, 2,4-heptadienal, 2,4,7-decatrienal, 3-hexen-
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1.6-dial, ethane, acetaldehyde, butanal, 2-pentenal, ethyl and 2-butylfuran, 4,5-epoxy-2-

heptenal, 3,6-nonadienal, and fatty esters from methyl linolenate hydroperoxides (29). 

There is a considerable difference, however, in the flavor significance of these 

volatile compounds. Frankel (27) reported (Table 1) that hydrocarbons have the highest 

Table 1. Flavor Threshold Values of Classes of Volatile Compounds" 
Class of compound Threshold value (ppm) 
Hydrocarbons 90-2150 
Substituted furans 2-27 
Vinyl alcohols 0.5-3 
1 -Alkenes 0.02-9 
2-Alkenals 0.04-2.5 
Alkanals 0.04-1.0 
trans, trans-2,4-Alkadienals 0.04-0.3 
Isolated alkadienals 0.002-0.3 
Isolated cis-alkenals 0.0003-0.1 
trans, cis-2,4-alkadienals 0.002-0.006 
Vinyl ketones 0.00002-0.007 
"Source: Ref. 26. 

threshold values and are presumed to have the least impact on flavor. Substituted furans, 

vinyl alcohols and 1-alkenes also are not particularly significant. In order of increasing flavor 

significance, vinyl ketones are the most potent with threshold values as low as 0.00002 ppm. 

Therefore, when estimating the impact of volatile oxidation products on flavor, it is 

necessary to know not only their relative concentration in a given fat, but also their relative 

threshold. Table 2 (26) lists volatile carbonyls identified in soybean oil in decreasing order of 

relative concentration with their corresponding threshold values, in which, f, f-2,4-decadienal 

was the most abundant. If the weighted percentages were calculated on the basis of 1-octen-

3-ol, which has the lowest threshold value, the f, c-2,4-decadienal becomes the most flavor 
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important followed by from, fraMJ-2,4-decadienal, (ronf, c:j-2,4- heptadienal, l-octen-3-ol, 

n-butanal and n-hexanal. 

The impact of these volatile compounds on flavor can be both positive and 

negative. For example, 3-czj- and 3-franj-hexenal isolated from reverted soybean oil was 

Table 2. Flavor Significance of Soybean Oil Volatiles* 

Major 
volatiles 

Relative 
% 

Threshold 
value* 
(ppm) 

Weight % 
(1-Octen-3-ol) 

Relative 
order 

f,f-2,4-Decadienal° 33.7 0.1 2.5 2 
f,c-2,4-Decadienal 17.9 0.02 6.7 1 
f ,c-2,4-Heptadienal 11.1 0.04 2.1 3 
2-Heptenal 5.6 0.2 0.21 8 
?,f-2,4-Heptadienal 4.5 0.1 0.34 7 
n-Hexanal 4.5 0.08 0.42 6 
n-Pentane 3.1 340 6.8" 10 s 16 
n-Butanal 1.5 0.025 0.45 5 
2-Pentenal 1.2 1 0.009 13 
1 -Octen-3-ol 0.9 0.0075 0.9 4 
2- Pentyl furan 0.8 2 0.003 14 
n-Pentanal 0.7 0.07 0.075 10 
2-Hexenal 0.7 0.6 0.009 13 
n-Nonanal 0.7 0.2 0.026 11 
n-Heptanal 0.6 0.055 0.082 9 
1-Penten-3-ol 0.5 4.2 8.9*10-4 15 
2-Octenal 0.5 0.15 0.025 12 
* Source: Ref. 30. 
''Source: Ref. 31. 

= frans, f/ans; f,c = frans, c/s. 

described as green-beany (32), but the great amount of y- and 6- lactones present in coconut 

oil was thought to contribute positively to its unique flavor and aroma (33). However, it is 

difficult to agree on common terms for any particular odor or flavor of a fat by sensory panel 
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and it is controversial about what compounds cause what particular flavors in fats and oils. 

On the other hand, little progress has yet been made in relating flavor descriptors with 

individual volatile compounds due to additive and antagonistic interactions between volatile 

compounds in a natural mixture - food. For instance, Hammond and Hill (34) noted that oct-

l-en-3-one accounted for the metallic flavor of autoxidized milk; other researchers identified 

this compound as a predominant contributor to reverted flavor in soybean oil (35). And you 

may ask what do you mean by "reverted"? 

Crude SBO has a characteristic "green-beany" flavor, which during refining, 

bleaching and deodorization, is eliminated to produce a bland tasting, light colored oil. 

However, flavor returns during storage and has been characteristically called the "flavor 

reversion" of SBO (36). Several theories for the cause of reversion flavor have been 

proposed (15, 36). Now linolenic acid is widely accepted as the most important precursor of 

flavor reversion of SBO when oxidized. Efforts, such as reduction of linolenic acid through 

plant breeding and hydrogénation, have been taken to eliminate "reversion"' flavor of SBO. 

The term 'reversion'' is a misnomer since the flavor formed upon aging is not exactly the 

same as the raw "green beany" flavor typical of crude oil before processing into finished oil 

(36). 

Secondary nonvolatile oxidation products Decomposition and condensation of 

hydroperoxides produces a multitude of nonvolatile monomeric products, including di- and 

tri-oxygenated esters, dimeric and polymeric materials, especially at elevated temperature. 

Many of these dimers and polymers are known to be rich sources of volatile carbonyl 

compounds and to decrease the flavor and oxidative stability of SBO (37). These high-
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molecular-weight materials also can produce a series of physical and chemical changes to the 

oil and food products, including increased viscosity, polarity, free acid content, development 

of dark color, and an increased tendency of the oil to foam (22). 

Factors Affecting Fat and Oil Stability and Quality 

Fatty acid composition Fatty acids differ in their susceptibility to oxidation; 

thus, fatty acid make-up of an oil has a major effect on its stability and flavor quality. Fatemi 

et al. (7) measured the relative rates of oxidation of the pure oleate, linoleate, and linolenate 

fatty esters as 1:10.3:21.6. However, it is difficult to predict the contribution of different fatty 

acids in promoting oxidation when present in mixtures as is the case in natural fats. Some 

studies showed significant interactions between different unsaturated fatty esters (38, 39). 

With equal mixtures of oleate, linoleate and linolenate, the respective ratio of hydroperoxides 

corresponding to the specific fatty acid was 1:4.3:5.8 at a peroxide value of 114 and 1:6.3:3.7 

at a peroxide value of 563. Therefore, at the more advanced level of autoxidation, the 

proportion of linolenate hydroperoxides detected was less than that of linoleate and greater 

than that of oleate hydroperoxides. Based on the susceptibility of fatty acids to oxidation, 

removal of fatty acids that oxidize quickly might be used to improve stability and quality of 

SBO. Therefore, reduction of linolenic acid and elevation of oleic acid through plant 

breeding can be used to achieve this goal. 

Triglyceride structure Some researchers (40) have observed that normal 

soybean oil randomly interesterified with stearate was far less stable than when stearate was 

placed selectively on the wz-1 and j/z-3 positions. Although the reasons for the effect are not 
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fully understood, most experts now agree that the placement of fatty acids within the 

triacylglycerol does have an effect on oxidation. The implication to the fats and oils industry 

is that it is possible to alter (increase or decrease) the oxidative stability of a native oil by 

randomization (8). 

Free fatty acids, mono- and diglycerides, and phospholipids Fatty acids may 

be cleaved from the glycerol backbone by action of enzymes native to the plant or animal 

from which the oil is extracted. Free fatty acids oxidize slightly more quickly than when 

esterified to the glycerol backbone; they can catalyze the oxidation of the entire bulk of the 

oil; Catalytic trace metals from oil processing and storage equipment can attach to the free 

fatty acids and thus accelerate oxidation of the oil (8). The presence of mono- and/or 

diglycerides also reduces the oxidative stability of an oil (41). Phospholipids, present in 

crude soybean oil at -1.5%. have been reported as anti- and prooxidants, depending on a 

number of other factors (42). Fortunately, these components are nearly completely removed 

from vegetable oils during refining, bleaching, and deodorization to produce a stable product. 

Native antioxidants The stability of many vegetable oils has been credited to the 

presence of the native tocols and other natural antioxidants (8). Tocols include four 

tocopherol and four tocotrienol isomers, each designated as a, p, y, or 8 on the basis of 

methylation of the chromanol ring. They are one kind of phenolic compound that is widely 

distributed in plants, and are important to controlling oxidative processes in both plants and 

the extracted oils. They inhibit lipid oxidation in foods and biological systems by stabilizing 

hydroperoxy and other free radicals (43). Lard, long considered to be oxidatively unstable 
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because of its lack of natural antioxidants, especially tocopherols, would benefit from having 

a greater concentration of native antioxidants as shown by Marinova et al. (44). The (X-

tocopherol also acts as a singlet oxygen quencher preventing photooxidation of fats and oils. 

Other native antioxidants, including flavonoids, phenols, phenolic acids and their derivatives, 

terpenoids such as carsonic acid, canosol, rosmarinic acid, rosmaridipbenol and rosmanol 

also demonstrate antioxidant acitivity as free radical acceptors and as chain breakers in 

different food systems (45). 

Other minor constituents frequently found in fats and oils, such as the two fat-soluble 

pigments, chlorophyll and carotenoids, may act as photosensitizers and singlet oxygen 

quenchers in the light. The presence of chlorophyll in canola and soybean oils, a common 

problem in immature seed, is generally agreed to reduce oxidative stability during storage. 

The carotenoids, ^-carotene and lycopene, are particularly effective at quenching singlet 

oxygen, especially at the low oxygen pressures. Growing evidence also indicates that a 

significant amount of photosensitizers is still left in bleached-deodorized SBO to contribute 

to its light instability (46. 47) and refining and bleaching also remove singlet oxygen 

quenchers, such as the carotenoids. 

Some plant sterols, including A^-avenasterol, A^-avenasterol, fucosterol, 

citrostadienol, vemosterol, isolated from the unsaponifïable fraction of olive, com, wheat, 

and Verno/iia (mfWmmfKxz oils have shown anti-polymerization activity in heated oils (48). 

External factors: light, oxygen, temperature, surface area, water activity, metals and 

added antioxidants In addition to factors inherent in the composition of an oil, any 

external factors that contribute to lipid oxidation reactions can affect oil stability and quality. 
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The presence of light and oxygen promotes lipid oxidation (49). The rate of reaction is 

greater at high temperatures than at lower temperatures and oxidation increases with an 

increase in the surface area of fat or oil that is exposed to air (49). For a pure edible oil, the 

oxidative stability is generally greatest at extremely low water activity, where hydrolysis of 

the fatty acids from the glycerol backbone is unlikely (8). Transition metals, particularly 

those with two or more valence states, are prooxidants. They can come from metallic 

equipment used in oil processing or storage or from the soil in which an oil-bearing plant was 

grown. Thus, it is extremely difficult to remove trace metals completely from fats and oils. 

For this reason, metal chelators, especially citric acid, are typically added to fats and oils 

during processing (8). Synthetic antioxidants, such as monotertiary butylhydroquinone 

(TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and propyl 

gallate (PG), in addition to those naturally present in oils, are typically added to fats and oils 

to reduce and slow the rate of oxidation. The chemical compound, polydimethylsiloxane, is 

also widely applied in aqueous systems and in frying to suppress foaming and polymerization 

(50). 

Measures to Improve Fat and Oil Stability and Quality 

Hydrogénation Hydrogénation is an important process for maintaining flavor 

stability and is the basis for the shortening, margarine and salad oil industries (15). During 

hydrogénation, gaseous hydrogen, liquid oil, and a solid catalyst, such as nickel or palladium, 

interact under agitation in a closed vessel. Generally, hydrogénation of fats is not carried to 

completion, and fats are just partially hydrogenated providing only a partial solution to 

improving flavor stability of SBO. Under these conditions, hydrogénation may be selective 
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or nonselective. "Selective" means that hydrogen is added first to the most unsaturated fatty 

acids. The selectively hydrogenated oil is more resistant to oxidation because of the 

preferential hydrogénation of the linolenic acid. Another important aspect of hydrogénation 

is the formation of frww fatty acid isomers due to the reversible character of chemisorption 

(3,51). 

Plant breeding Another method to improve stability and flavor quality of SBO 

through altering fatty acid composition is via plant breeding. The tools used by plant breeders 

have been selections, crossing, mutation and genetic engineering (10). By analyzing a large 

number of seeds for their fatty acid composition, seeds with desired fatty acid composition 

can be selected for future crop development. Further by crossing plants with special fatty 

acid composition with plants of normal fatty acid composition, offspring seeds with desired 

fatty acid composition can be developed. Mutation involves treating seeds or plants with 

mutagenic materials, such as gamma rays or sodium azide and then analyzing the offspring 

seeds from the treated parents for fatty acid composition, to find seeds with desirable 

modifications (52). Genetic engineering, including such techniques as recombinant DNA, 

gene transfer, tissue culture and plant regeneration, involve direct gene manipulation and can 

help to reach goals that are difficult to achieve by conventional breeding. Plants bred through 

genetic engineering, however, must deal with international regulatory issues and consumer 

resistance to these genetically modified organism (GMO) crops. Also, although quality 

enhancement of vegetable oils can be achieved through both plant breeding and 

hydrogénation, the former has become increasing popular because it produces frwzj free oils, 

whereas commercial hydrogénation creates oils with frana double bonds. Low-linolenic, 
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high-oleic, low-saturated and high-saturated vegetable oils through plant breeding have 

become available for targeted applications (9). 

Antioxidants Autoxidation can be inhibited or retarded by adding low 

concentrations chain-breaking antioxidants (AH) that interfere with either chain propagation 

or initiation (15). Chain-breaking antioxidants include phenolic and aromatic compounds 

hindered 

ROO* + AH —> ROOH + A* Eq. 11 

with bulky alkyl substituents. Common synthetic chain-breaking antioxidants used in food 

lipids include BHA, BHT, TBHQ, and PG. The antioxidant radical (A*) formed in Eq. 11 

should be stable and unable to initiate or propagate the oxidation chain reaction. The 

phenolic antioxidants achieve stability by forming resonance hydrids (Figure 5.) (50). A 

radical intermediate, such as, semiquinone, can further undergo a variety of reactions 

including dismutation to form a stable quinone and can regenerate the original hydroquinone 

(Figure 6) (50). However, these antioxidants generally lose their efficiency at elevated 

temperatures and they are most effective during the induction period. Once the antioxidant is 

consumed, oxidation accelerates (50). 

Preventive antioxidants reduce the rate of the chain initiation. The most important 

initiation suppressors are metal deactivators that chelate metal ions that catalyze chain 

initiation. Metal deactivators used for stabilizing edible fat and lipid-containing foods include 

citric, phosphoric, tartaric acid, and phospholipids. Peroxide destroyers also are preventive 

antioxidants; for example, sulfur compounds, phosphates and phosphines reduce 

hydroperoxides into more stable alcohols (15). Ultraviolet light deactivators can prevent 
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PH O O o 

ROO* + RDOH + 

OH OH OH OH 

Figure 5. The formation of resonance hydrids by the phenolic antioxidants 

OH OH OH O 

Figure 6. The dismutation of a semiquinone radical intermediate 

oxidation by absorbing irradiation without the formation of radicals. Examples include 

pigments such as carbon black, phenyl salicylate, and a-hydroxy-benzophenone. A 

significant synergistic antioxidative effect can be achieved when chain-breaking and 

preventive antioxidants are used together, because they suppress both initiation and 

propagation. The synergistic effect of common antioxidants in combination with metal 

inactivators in foods has been known for a long time (53). Loliger (45) showed that the 

tertiary antioxidant system of vitamin E, vitamin C, and phospholipid provided the best 
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protection against oxidative degradation among when compared to the two antioxidants used 

alone or in combination. 

Processing and storage with minimum exposure to oxidation Good processing 

and storage measures include careful control of refining temperature, vacuum bleaching, 

inert gas blanketing, low temperature and protection from light during storage. Vacuum 

conditions are very important during bleaching, because oxidation can readily occur by 

exposure of a large surface area to air at elevated temperatures. Refining and bleaching 

remove not only natural photosensitizers but also singlet oxygen, thus they may upset the 

natural balance between de-stabilizing photosensitizers and stabilizing quenchers, such as 

carotenoids. The restoration of carotenoids may effectively protect lipids against singlet 

oxygen deterioration, but the resulting yellow coloration maybe objectionable to the 

consumer. Another approach to protecting stored oils is the use of a package or container that 

is absorbent to the light energy necessary for photosensitization, or that prevents such light 

from reaching the oil. Also, displacement of oxygen in a container by nitrogen or carbon 

dioxide to < 2% has been shown to reduce oxidation effectively in vegetable oil (54). 

Methods to Measure Stability and Quality of Fats and Oils 

Peroxide value (PV) The PV, expressed as milliequivalents of peroxide per 

kilogram of oil (mEq/kg), measures the primary oxidation products of oils - hydroperoxides. 

Assessment of the PV of an oil during storage is quite common, and fairly useful. It is said 

to be an index to the oxidative state of an oil. For SBO, an oil is considered to be "fresh" with 

PV of <1.0, to have low oxidation with a PV of 1.0-5.0, to have moderate oxidation at a PV 
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of 5.0-10.0, to have high oxidation at a PV >10.0, and to have poor flavor quality at a PV >20 

mEq/kg oil. Several methods (55, 56, 57, 58) can be used to measure PV of an oil depending 

on the specific circumstance. 

Conjugated diene value (CD) One of the first steps in the oxidation of PUFA 

in an oil is a shift in the position of the double bonds and resulting in the formation of 

conjugated hydroperoxides. The conjugated structure absorbs strongly at a wavelength of 

232-234 nm. The CD value by this method (56) is expressed as percentage of conjugated 

dienoic acid in the oil and is an indication of initial or primary oxidation products. The CD 

can be used as a comparative method only when the oils have the same initial FA 

composition, because the greater the amount of PUFA in an oil, the greater the potential rise 

in CD. Therefore, it should be used as a relative measurement of oxidation in an oil only if 

the fatty acid composition is known (58). 

p-Anisidine value (p-AV) The method (56) measures light absorbance of 

aldehydes at 350 nm, primarily 2-alkenals, and 2,4-dienals. But it is not entirely specific 

because the color intensity developed depends not only on the concentration but also on the 

actual structure of the aldehyde. Therefore, the result is comparable only within an oil type 

because of the initial difference in the value among oil sources (5 9). 

Free fatty acid (60), Polar compound (56), Viscosity, and Color These chemical 

analyses are often performed to determine the degree of abuse of oils during heating or 

frying. They are important indicators for frying oil administration and also have effect on the 
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quality of the fried food. The FFA increases during frying indicating increased fatty acids are 

released from TAG ester linkages via hydrolysis (22). Thus, it is an important marker for oil 

quality. Extremely abused frying oil should be discarded based on a German standard of 27% 

total polar compound as an indicator of poor frying oil quality (61). Changes of viscosity and 

color of the frying oil are also used as indicators of extent of frying oil degradation. 

Other chemical methods of analysis There are many other methods for measuring 

lipid oxidation and quality by chemical means. A few of the best-known procedures include 

thiobarbituric acid test, carbonyl value, and headspace oxygen analysis. These methods are 

reviewed and discussed by other researchers (8. 62). 

Volatile compound analysis by gas chromatography (GC) The volatile 

carbonyl compounds from oxidation in fats and oils are major contributors to off-flavor 

development as discussed previously. Therefore, there has been significant effort at 

identification and quantification of these compounds. It is difficult to analyze these 

compounds in fats and oils because of several reasons. It is difficult to remove them from the 

fats and oils; widespread contamination by carbonyls in the experiment solvents, glassware, 

and other materials used in the laboratory may cause artifacts to the results; and hundreds of 

volatile compounds may be formed in fats and oils during oxidation causing difficulties in 

the interpretation. Not until the recent use of efficient GC columns and proper means of 

identification has the volatile compound analysis become possible. 

Three basic GC procedures are generally employed (56), including static headspace, 

dynamic headspace, and direct injection. Static headspace involves equilibration of gases 
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from the area above a liquid sample; a set volume of the headspace gas from the sample is 

then injected directly into the GC for separation and quantification. The dynamic headspace 

method, also known as purge and trap, employs a sorbent, such as Tenax GC, Chromosorb, 

or Porapak Q., to collect volatile compounds which are swept from a heated sample with 

nitrogen. After trapping, the sorbent may be extracted with solvent, or transferred directly to 

the GC. In direct injection, an oil sample may be injected directly into the port of GC through 

a silanized glass wool plug. Each of these methods has their own advantages and 

disadvantages (8). 

Recently, the method of GC Solid-Phase Microextraction (GC-SPME) has been 

developed (63, 64, 65). It uses a fiber coated with different polymers to extract volatile 

compounds from a food system. The method can be used in solid, liquid, and gaseous 

systems. It is not difficult to do the analysis at a consistent condition. The results obtained in 

our laboratory and by other researchers are very good. More details of the procedure can be 

found in the materials and methods section of the fourth paper in this dissertation. 

Sensory evaluation The ultimate method to assess oil quality and stability is 

sensory analysis, which can not be replaced by any chemical or instrumental analysis, 

although some methods can correlate fairly well with this overall evaluation. Sensory 

evaluation of oils should be done by a panel of experts or a trained panel according to the 

method described by the American Oil Chemists' Society (56). In actual evaluation, usually, 

the panel is asked to score the overall flavor quality, and as well as the intensity of many 

individual off-flavors. The number of flavors that can be present in soybean oil can be as 

many as 15, or more (56). Therefore, the resulting data are multivariate, because they are 
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made up of complex interrelated elements. The standard display of data, such as numbers, 

may obscure the recognition of relationships among elements. To make overall perception 

and interrelationships immediately apparent, and to provide a more accurate judgment as a 

well-integrated pictorial display, the second paper of this dissertation is an attempt to apply 

one of the multivariate data presentation methods in sensory evaluation of vegetable oils. 
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ABSTRACT: The effects of linolenic acid (18:3) concentration, combined with TBHQ 

addition, temperature, and storage time, on the oxidative and flavor stabilities of soybean oils 

(SBO) were evaluated. During storage under fluorescent light at both 21°C and 32°C, the 

SBO with ultra-low-18:3 concentration (1.0%, ULSBO) generally had greater oxidative 

stability than did SBO with low-18:3 concentration (2.2%, LLSBO). The ULSBO had about 

half the p-anisidine value of LLSBO throughout the storage. Although the ULSBO initially 

had significantly greater peroxide values and poorer (lower) sensory scores for overall flavor 
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quality than did LLSBO, significant differences disappeared with storage. The ULSBO had a 

lower content of polar compounds and greater oil stability indices than did LLSBO when 

TBHQ was present. All oils were more oxidatively stable with TBHQ addition, but the 

TBHQ addition did not result in improved flavor stability early in storage. In all tests, oils 

stored at 32°C were less stable than oils stored at 21°C. The TBHQ had a better antioxidant 

capacity when the 18:3 concentration was lower. The retardation effect of TBHQ on lipid 

oxidation and the improved stability of ULSBO over LLSBO were more easily detected 

when the storage temperature was higher. 

KEY WORDS: Fatty acid composition, flavor stability, linolenic acid concentration, 

oxidative stability, soybean oil. 

Soybean oil (SBO) has a good nutritional profile because of its high proportion of 

unsaturated fatty acids, but SBO has poor oxidative stability and is prone to flavor 

deterioration. The fatty acid, linolenic acid (18:3), oxidizes very quickly and is the most 

important precursor of flavor deterioration in 18:3-containing oils (1, 2). Hydroperoxides 

formed by oxidation of 18:3 can break down to many undesirable flavor compounds such as 

2,4-heptadienal, 2-butylfuran, 2- and/or 3-hexenal, 2-pentenal and butanal (3). To improve 

oxidative stability and flavor quality, the SBO may be hydrogenated to reduce the 

concentration of polyunsaturated fatty acids; however, frana fatty acids (fFA) are formed 

during this process. Because of health concerns over the presence of fFA in our diets (4, 5), 

lowering the 18:3 content to a level similar to that obtained by partial hydrogénation, but 

without frana formation, has been an objective of plant breeders. Another advantage to 
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producing oils needing no additional processing is that fewer processing costs should result 

in more profit for farmers and processors (6). Previous studies (7, 8, 9) determined that the 

oxidative and flavor stability of oils were inversely proportional to the initial 18:3 

concentration. Although considerable information is available regarding the relationship 

between oxidative and flavor stability of SBO and 18:3 concentration, soybean breeders need 

more precise compositional targets to produce SBO that have good oxidative and flavor 

stability. The objective of this research was to study the effects of two low levels of 18:3 

concentration (-1.0% and 2.2%) combined with TBHQ addition, temperature, and storage 

time on the oxidative and flavor stabilities of SBO. 

MATERIALS AND METHODS 

Soybean oils and design. Soybeans (Glycine max) with low-18:3 (2.2%) and ultra-low-18:3 

(1.0%) concentrations, grown in summer 2000 in Iowa (weather zone 2), were obtained from 

Protein Technologies, Inc. (St. Louis, MO). The LL soybeans were crushed in Montolla, 

MN, and the UL soybeans were crushed at the POS Pilot Plant Corporation in Saskatoon, 

Saskatchewan, Canada. Both oils were hexane-extracted, and refined, bleached, deodorized, 

and bottled at the POS Plant. Citric acid (50 ppm) was added to the oils during the cool-down 

stage of deodorization. The antioxidant, TBHQ (100 ppm), was added to half of each oil type 

at the deodorization step before bottling in co-extruded polyethylene terephthalate (PET) 

plastic bottles. The bottles were sparged with nitrogen until they contained less than 2% 

oxygen in the headspace, then sealed. Bottled oils were sent to Iowa State University (ISU) 

(Ames, IA) for evaluation. Thus, four SBO treatments were tested, including low-18:3 SBO 

(LLSBO), LLSBO with the addition of 100 ppm TBHQ (LLSBOW), ultra-low-18:3 SBO 
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(ULSBO), and ULSBO with the addition of 100 ppm TBHQ (ULSBOW). For each of these 

four treatments, two bottles were retained at arrival, and the remaining bottles were stored 

under fluorescent light with uniform exposure of 70-foot candle light intensity at 21°C and 

32°C, respectively, for 12 months. Duplicate bottles of oil from each treatment were analyzed 

in duplicate at 0, 2,4, 6, 8, 10, and 12 months of storage. 

CAg/mcak. Tetrachloroethane (98+%), lauroyl peroxide (97%), p-anisidine (99%), and 

sodium methoxide (0.5 M solution in methanol, A C S. reagent) were purchased from 

Aldrich Chemical Co. (Milwaukee, WI). Iso-octane, s-diphenylcarbazide, ethyl ether, acetic 

acid glacial (certified A.C.S. grade), and petroleum ether (Optima) were purchased from 

Fisher Scientific Inc. (Fair Lawn, NJ). Silica Gel 60, particle size 0.063-0.200 mm, was from 

E. Merck Science (Gibbstown, NJ). The individual tocopherols, including d-a-tocopherol, d-

y-tocopherol, and cZ-ô-tocopherol. (90% pure) were purchased from Sigma-Aldrich, Inc. (St. 

Louis, MO). 

Fatty acid composition by GC. Fatty acid compositions of SBO were determined by 

converting TAG into FAME according to a method described by Hammond (10). The GC 

conditions were the same as described by Shen gf of. (6). 

TbcopAerof confenfs 6y #PZ,C. Tocopherol contents of the oils were determined according 

to AOCS Official Method Ce 8-89 (11) by using the System Gold® HPLC equipped with a 

UV detector and solvent miser silica 5u column (length 250 nm, ID 2 mm; Alltech 

Associates, Inc., DeerGeld, IL). Tocopherol content in native soybean seeds was obtained 

from oil extracted with hexane after crushing the seed with a hydraulic press, as described by 

Hammond (10). 
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CM The OSI were analyzed according to AOCS Official Method 

Cd 12b-92 (11) with the Oxidative Stability Instrument (Onion, Inc., Rockland, MA) at 

110°C with an air flow rate of 150 mL/min. 

Peraxwk va/wgj (f V). The PV was determined by the Stamm test as modified by Hamm ef 

a/. (12). The commercially available tetrachloroethane was purified by the following steps: 

adding 1% lauroyl peroxide, heating in a boiling water bath for 1 h, distilling at 60°C by 

using a rotary evaporator, adding 0.2% s-diphenyl carbazide, heating in a boiling water bath 

for 1 h, distilling at 60°C with the rotary evaporator and, finally, collecting the purified 

solvent from the receiver flask. Purity of the solvent was judged by having a nil or nearly nil 

reading at 565 nm on a spectrophotometer. 

Wwg (p-AVj. The p-AV was measured by using AOCS Official Method Cd 

18-90(11). 

Po/ar compowzfù. The percentage of polar compounds was measured according to AOCS 

Official Method Cd 20-91 (11). 

co/ors (Co/orj). Colors were measured based on AOCS Official Method Cc 

13e-92 (11) by using an AOCS Tintometer AF710 with a sample tube depth of 5 % " (13.3 

cm). 

gvaZwafzoMf. Sensory evaluations were conducted according to AOCS 

Recommended Practice Cg 2-83 (11). A 15-member trained descriptive panel was used to 

evaluate overall flavor quality and individual off-flavor intensities of SBO. All panelist 

candidates were trained during three 1.5-h sessions. During training, panelists were given 

standards for off-flavor characteristics found in SBO. These standards included fresh SBO 

purchased from a local store, and SBO treated to have buttery, grassy, and painty flavors, and 
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a bitter taste (0.1% caffeine in commercial fresh SBO), respectively, prepared according to 

the AOCS method Cg 2-83 (11). Panelists who could not recognize these standards after 

training were omitted as panelists. 

For the actual tests, the SBO were held at 50°C; placed in plastic cups labeled with 

random, three-digit codes; and presented in random order to panelists. To avoid tasting 

fatigue and flavor carry-over, panelists were asked to expectorate the sample after tasting and 

to rinse their mouths with distilled water between tasting samples. Tests were conducted in 

individual, lighted booths. The oils were evaluated for overall flavor quality on a 10-point 

scale (10=excellent quality, 9 and 8=good, 7 and 6=fair, 5 and 4=poor, 3, 2, and 1 =very poor) 

and for intensity of individual flavors described by the AOCS method Cg 2-83 (11) on a 10-

point scale (10=bland, 9=trace, 8=faint, 7=slight, 6=mild. 5=moderate, 4=definite, 3=strong, 

2=very strong. l=extreme). Individual flavors included nutty, buttery, corny, beany, 

hydrogenated, burned, weedy, grassy, rubbery, melon, painty, and Ashy. Overall flavor 

quality scores were calculated as the average of all scores given by the panelists. Intensity of 

a flavor was calculated as the average of the intensity scores by the panelists who detected 

the flavor. 

Triangle tests were done following standard procedures (13) to determine whether the 

overall flavor characteristics between SBO, with and without TBHQ addition, were different. 

.S&zfiyfzco/ ana/yaw. Data were analyzed as a randomized 2x2x2x7 factorial 

experiment. Data from all treatments were analyzed by general linear models procedure 

(program GLM) (14). Differences in mean values among treatments were determined by the 

least significant difference test at a = 0.05, unless listed otherwise. 
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RESULTS AND DISCUSSION 

Faffy acW ca/cwZafgd o%W;za6;Z;f)', ;Wmg va/wg (/V) and Tofox va/we. Initially, 

all the ultra-low-18:3 SBO treatments contained similar amounts of 16:0 and 18:0, slightly 

more 18:1, slightly less 18:2 and less 18:3 (1.0%), than did all the low-18:3 SBO treatments 

(2.2% 18:3) (Table 1). Values for calculated oxidizability and IV suggest that all the ultra-

low-18:3 SBO treatments would be more stable than all the low-18:3 SBO treatments. There 

were no differences in fatty acid composition, calculated oxidizability, or IV between 

LLSBO and LLSBOW and between ULSBO and ULSBOW. The fatty acid composition of 

all oils did not change during storage at 21 °C or 32°C for 12 months. 

Tocopherols. Initially and after 12-month storage, the ULSBO and ULSBOW contained 

much less a-. y-, §-, and total tocopherols than did LLSBO and LLSBOW (Table 2). The 

ULSBO and ULSBOW had less total loss and slightly less % of total loss than did LLSBO 

and LLSBOW, suggesting that tocopherols in ULSBO and ULSBOW were less consumed or 

exhausted than in LLSBO and LLSBOW. 

To determine whether the differences in tocopherol contents between the ultra-low and 

low-18:3 SBO were inherent in the beans or resulted during processing, seeds from two lines 

of UL and three lines of LL soybeans grown in four different environments, and of same 

genetic background as those used in the current study, were analyzed (Kristen McCord, 

personal communication). There were no differences in the concentrations of tocopherol 

homologues or total tocopherol concentration between the UL and LL SBO, or among the 

different growing environments. A tendency observed by Shmulovich (15) for increased 

polyunsaturate of soybean oil with increased tocopherol content did not exist in the current 

study. Thus, the differences in the tocopherol concentrations found in the processed oils used 
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in the current study were likely a result of processing. None-the-less, and despite the lower 

tocopherol levels, ULSBO showed better stability than did LLSBO as discussed in the 

following sections. 

Oxâ&zfiyg jfaMzfy The OSI of all SBO treatments decreased during storage, 

suggesting a decrease in oxidative stability overall (Table 3). Throughout storage, oils with 

TBHQ addition had significantly greater OSI than did the oils without TBHQ addition for the 

same 18:3 concentration and storage temperature. The LLSBO tended to have greater OSI 

values than did the ULSBO when TBHQ was absent and at the same storage temperature, but 

differences were small and not usually statistically significant. When TBHQ was present, the 

opposite trend was observed; that is, the ULSBOW had greater OSI than did LLSBOW at the 

same storage temperature. The statistical analysis for a null interaction hypothesis between 

the effects of 18:3 content and TBHQ addition on OSI revealed an interaction (p < 0.001 ). 

Oils stored at 21°C had greater OSI than did the oils stored at 32°C with the same 18:3 

content and TBHQ level. But, in general, the differences were significant only when TBHQ 

was present, which suggests an interaction between the effects of temperature and TBHQ 

addition on OSI. Statistical analysis demonstrated an interaction (p = 0.0061) between the 

effects of temperature and TBHQ addition on OSI. The antioxidant, TBHQ, is a common 

chain-breaking antioxidant used in food lipids to interfere with either chain propagation or 

initiation of lipid oxidation via free radical reactions (2). 

These results and interactions between the effects of 18:3 content and TBHQ addition, and 

between the effects of temperature and TBHQ addition on OSI, showed that TBHQ had a 

better antioxidant capacity when the 18:3 concentration was lower. The retardation effect of 

TBHQ on lipid oxidation was detected more easily when the storage temperature was higher. 
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feraride The effects of the treatment factors (18:3 concentration, TBHQ addition, 

and storage temperature) on PV were complex. Statistical analyses of the data showed 

interactions between the effects of 18:3 concentration and temperature (p = 0.0006); between 

the effects of 18:3 content and TBHQ addition (p < 0.0001); and among the effects of 18:3 

content, TBHQ addition, and temperature (p = 0.0625, close but not statistically significant) 

on PV. 

When TBHQ was absent and at the same storage temperature, the ULSBO initially had 

significantly greater PV than did LLSBO (Table 3). But the trend reversed during storage by 

10 months at 21°C and by 8 months at 32°C. The interaction between the effects of 18:3 

concentration and temperature on the PV suggests that the improved stability of ULSBO over 

LLSBO appeared sooner at a higher storage temperature. When TBHQ was present, at 21°C, 

the ULSBOW had higher PV than did the LLSBOW; at 32°C, the ULSBOW had lower PV 

than did LLSBOW. The interactions between the effects of 18:3 content and TBHQ addition 

and among the effects of 18:3 content. TBHQ addition, and temperature on PV suggest that 

TBHQ had a better antioxidant capacity when the 18:3 concentration was lower. The 

retardation effect of TBHQ on lipid oxidation and the improved stability of ULSBO over 

LLSBO were more easily detected when the storage temperature was higher. 

The TBHQ addition had a great effect on PV (Table 3). As storage progressed, all the oils 

with TBHQ addition had lower PV than did the oils without TBHQ addition for the same 

18:3 concentration and storage temperature. Also, temperature played an important role in 

the formation of lipid hydroperoxides. During storage, oils stored at 21°C generally 
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developed lower PV than did oils stored at 32°C for the same 18:3 concentration and TBHQ 

level, although the differences were not always significant. 

p-AV. Throughout storage, ULSBO had significantly lower p-AV than did LLSBO at the 

same temperature and TBHQ levels, except for oils with TBHQ stored at 32 °C for 8 months 

(Table 3). Such results are in agreement with descriptions by other researchers who noted 

differences in p-AV of oils with different fatty acid compositions (11, 16). After storage 

began, oils with TBHQ addition had lower p-AV than did oils without TBHQ addition at the 

same 18:3 concentration and storage temperature except for LLSBO at 21°C and at 2- and 

10-month storage. This result and the interactions between the effects of 18:3 concentration 

and TBHQ addition (p = 0.0011), storage temperature and TBHQ addition (p = 0.0016), and 

18:3 concentration and storage temperature (p < 0.0001) on p-AV again suggest that TBHQ 

had a better antioxidant capacity when the 18:3 concentration was lower. The retardation 

effect of TBHQ on lipid oxidation and the improved stability of ULSBO over LLSBO were 

more easily detected when the storage temperature was higher. After two months, oils stored 

at 32°C had significantly greater p-AV than did oils stored at 21°C with the same 18:3 

concentration and TBHQ levels, except for LLSBO with TBHQ at 8-month storage (Table 

3). 

The p-AV method determines the amount of aldehydes (principally 2-alkenals and 2,4-

dienals) present; however, the color intensity of the yellowish reaction products formed 

depends not only on the amounts of aldehydic compounds present but also on their structure 

(11). A double bond in the carbon chain conjugated with the carbonyl double bond increases 

the molar absorbance by four to five times, that is, the 2-alkenals and dienals, especially, 

contribute substantially to the value found. Oils with high PUFA levels may have p-AV of 
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greater than 10.0 mmol/kg even when fresh, largely because of the structure of the aldehydes 

(17). The p-AV is comparable only within an oil type because of the initial difference in the 

value (16). 

The Totox value, taking into account the limit of the p-AV method, was calculated as the 

sum of p-AV and 2PV as shown in Table 1 (16). Initially, ULSBO had lower Totox than did 

LLSBO. There were no differences in Totox between LLSBO and LLSBOW or between 

ULSBO and ULSBOW. By the end of 12-month storage, ULSBO still had lower Totox than 

did LLSBO (Table 1). 

fo/ar Generally, ULSBO had lower polar compound percentages than did 

LLSBO at the same temperature and TBHQ level, especially as storage progressed (Table 3). 

At 32°C, oils with TBHQ addition tended to have lower values than did the oils without 

TBHQ addition at the same 18:3 level, especially as storage progressed. There was no such 

trend at 21°C. Statistical analysis confirmed the interaction between the effects of 

temperature and TBHQ addition (p < 0.0001) on polar compound percentages. Oils stored at 

21°C had lower values than did the oils stored at 32°C when TBHQ was absent, especially as 

storage progressed. These results and the interaction again suggest that the retardation effect 

of TBHQ on lipid oxidation was more easily detected when the storage temperature was 

higher. 

Co/ors. There were no interactions between the effects of 18:3 concentration, temperature, 

or TBHQ addition on color changes. Initially, ULSBO (3 yellow, 0.2 red) and ULSBOW (3 

yellow, 0.2 red) had significantly greater mean yellow and red readings than did LLSBO (5 

yellow, 0.5 red) and LLSBOW (4 yellow, 0.4 red), respectively (data not shown). But the 

pigment decomposition rate was not dependent upon the effect of 18:3 concentration on color 
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changes. The initial differences disappeared when all the oils became too pale to be read by 

the equipment at the end of 12-month storage. TBHQ addition had no effect on the yellow 

and red color changes of the SBO. The speed of pigment decomposition was greater at 32°C 

than at 21°C. 

jerwory gvafwafionj. Initially, LLSBO and LLSBOW had significantly better overall 

flavor quality scores than did ULSBO and ULSBOW, respectively (Table 3). At 2-month 

storage, significant differences disappeared and the ULSBO tended to have better overall 

flavor quality later in storage, especially at 21°C. Similar trend was observed in the change of 

PV of the oils demonstrating that ULSBO was more stable than LLSBO despite the initial 

more oxidized level of ULSBO than LLSBO due to processing. Generally, oils stored at 

21°C had better overall flavor quality than did oils stored at 32°C with the same 18:3 

concentration and TBHQ level, especially as storage time increased. The TBHQ addition 

tended to have a negative effect on overall flavor quality by sensory evaluations, especially 

through 8 months of storage. By 10 and 12 months, however, TBHQ addition tended to 

enhance overall oil quality scores. 

To further evaluate the impact of TBHQ on oil flavor, an untrained 33-member panel was 

used to compare the overall flavor characteristics of fresh commercial SBO without TBHQ 

addition to that of fresh commercial SBO with 100 ppm and to that of fresh commercial SBO 

with 200 ppm TBHQ addition by triangle test. No difference was found between the overall 

flavor characteristics of SBO without TBHQ addition and SBO with either 100 ppm or 200 

ppm TBHQ addition. More extensive sensory evaluations might reveal more information on 

the impact of TBHQ on oil flavor. A previous study on the effect of TBHQ on oil flavor 

stability found that TBHQ treatment did not enhance the flavor stability of oils (18). 
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For individual flavors, the predominant attributes detected by panelists in the SBO 

included painty, fishy, grassy, beany, nutty, and buttery flavors. The Pearson correlation 

coefficients between the intensity of painty, fishy, grassy, beany, nutty, and buttery flavors 

and overall oil quality scores were 0.870, 0.731, 0.687, 0.681, 0:403, and 0.002, respectively. 

That is, the intensity of painty, fishy, grassy and beany flavors had strong correlations with 

overall oil quality scores in sensory evaluations, whereas the intensity of nutty and buttery 

flavors had weak or no correlations with overall flavor quality. The sensory evaluation data 

of SBO with overall oil quality and multiple individual flavors represent typical multivariate 

data. Interpretation of the effects of 18:3 concentration, TBHQ addition, and temperature on 

individual flavor intensities and integrating the impact of individual flavor on overall sensory 

characteristics of SBO is beyond the scope of this paper; however, a more sophisticated 

method to simplify the representation of sensory characteristics of SBO is in process. 

In general, flavor scores paralleled those of the objective test results, in showing a slight 

advantage in stability and flavor quality, especially over time, of ULSBO over LLSBO. The 

results showed a further advantage of UL oil, in that, despite lower total tocopherol and 

tocopherol homologue concentrations in the initial and finished oils, UL still emerged as 

better oil. 
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Table 1 

Fatty Acid Composition (area %), Calculated Oxidizability", Iodine Value/ and Totox Value^ 

of Soybean Oils (SBO) with Low and Ultra-Low Linolenic Acid (18:3) Concentrations 

Fatty Acid Methyl Esters 
Iodine -
value 

Totox value 

Oils'' 16:0 18:0 18:1 18:2 18:3 Oxidizability 
Iodine -
value Before After 

(Palmitic) (Stearic) (Oleic) (Linoleic) (Linolenic) 

Iodine -
value Before After 

LLSBO 11.1 5.0 23.0 58.7 2.2 6.8 127.2 6.1 55.9 

ULSBO 11.4 5.0 25.2 57.4 1.0 6.4 123.7 2.8 43.6 

"Oxidizability = [oleate% + 10.3 (linoleate%) + 21.6 (linolenate%)]/100 (Ref. 1). 

b Iodine values were calculated from the FAME profile, according to AOCS Official Method Cd lc-85 (Ref. 11 ). 

c Totox value = fp-AV + 2 PV] (Ref. 16) of SBO initially and at the end of 12-mo nth storage; the values are the 

means of all LLSBO or all ULSBO, regardless of the level of TBHQ addition and storage temperature. 

dLLSBO = SBO with low-18:3 concentration; ULSBO = SBO with ultra-low-18:3 concentration. 
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Table 2. Tocopherol Concentrations (ug/g) of Soybean Oils Before and After Storage' 

Tocopherol homologue 

Oil* a y Ô Total Total % 

Before After Before After Before After Before After loss' Loss 

LLSB021 249 221 402 343 120 104 770 668 102""* 13" 

LLSBOW21 280 235 396 348 117 107 793 689 104"'* 13" 

ULSB021 125 104 204 209 35 31 364 344 20" 6" 

ULSBOW21 125 103 210 194 36 32 372 329 42' 11""* 

LLSB032 249 248 402 347 120 100 770 695 75*'" 10""* 

LLSBOW32 280 237 396 344 117 102 793 684 109" 14" 

ULSB032 125 119 204 192 35 28 364 339 25' 7h  

ULSBOW32 125 98 210 195 36 31 372 324 47^' 13" 

Comparison^ 

LLSBO 264 235 399 346 119 103 782 684 98" 13" 

ULSBO 125 106 207 197 36 31 368 334 34* 9" 

W/O TBHQ 187 173 303 273 77 66 567 511 56"* 10" 

WTBHQ 202 168 303 270 77 68 582 507 76"'* 13" 

21°C 195 166 303 273 59 53 575 508 67""* 11" 
32°C 195 151 303 270 59 50 575 510 64""* 11" 

" Indiv idual and total tocopherol concentrations of SBO before and after 12-month storage. 

The values are averages of duplicate analyses, with the overall mean of STDEV at 4.1. 

b Refer to footnote d in table 1 for definitions of LLSBO and ULSBO. Presence of W means 

with TBHQ; absence of W = without TBHQ; 21 or 32 refers to storage temperature in degree C. 
c Values in the same column with supercripts in common were not significantly different 

(p < 0.05). 
d Comparison of the means at two levels of one treatment factor, averaged over the levels of 

the other two factors. 



www.manaraa.com

46 

Table 3 

Oil Stability Indices (h), Peroxide Values (meq/kg), p-Anisidine Values (mmol/kg), 

Polar Compound Percentages (%), and Sensory Evaluations for Overall Oil Quality 

of Soybean Oils* with Low and Ultra-Low Linolenic Acid Concentrations 
Storage time (month) 

Analysis 
oil 0 2 4 6 8 10 12 

OSI LLSB021 6.9' 4.9* 4.8' 4.l' 4.o' 3.9' 3.8' 

ULSB021 5.2' 4.2* 3.6'' 3.3'' 3.1' 2.9' 2.8' 

LLSB0W21 17.4* 15.8" 12.6" 11.8" 11.5" 11.0" 10.7" 

ULSBOW21 20.7" 15.9" 14.0" 13.2" 11.8" 11.8^ 11.3" 

LLSB032 6.9' 4.6* 4.6' 4.o' 3.7'' 3.4' 3.2' 

ULSB032 5.2' 4.1* 3.3' 3.1' 3.0' 2.7' 2.4' 

LLSBOW32 17.4* 15.1" 9.2' 10.0' 9.4' 8.6* 8.1* 

ULSBOW32 20.7" 16.2" 12.6* 11.7* 10.4* 8.8* 8.4* 

PV LLSB021 0.3* 1.5' 3.1*'" 3.4' 8.4'"' 15.0* 27.3" 

ULSB021 0.4" 3.6" 4.6" 4.8' 10.5*' 11.5'' 20.8* 

LLSBOW21 0.3* l.f 1.7' 1.8' 4.1' 7.1' 8.3' 

ULSBOW21 0.2* 1.5' 2.0' 2.1' 7.0'' 8.5' 9// 

LLSB032 0.3* 2.8* 3.7*' 6.8' 14.5" 20.0" 29.3" 

ULSBQ32 0.4" 4.3" 7:7" 7.9" 13.4"-* 14.0*' 25.1"'* 

LLSBOW32 0.3* 1.5' 3.9*' 4.o' 7.6''''' 13.4"' 14.5' 

ULSBOW32 0.2* 1.4' 2.7'' 3.4' 3.4""' 9.6' 12.7'' 

"See footnote d in Table 1 and footnote b in Table 2 for definitions of SBO treatments. 

* Values in the same column for each test with supercripts in common were not significantly 

different (p < 0.05). 

'Overall oil quality score is based on the scale: 10=excellent, 9 and 8=good, 7 and 6=fair, 

5 and 4=poor, 3,2 and l=very poor. 
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Table 3 (continued) 
Soybean Storage time (month) 

Analysis 
oil 0 2 4 6 8 10 12 

p-AV LLSB021 5.5" 7.2* 7.3'" 7.5* 8.0* 12.9* 13.0' 

ULSB021 2.3" 2.9' 3.(/* 3.0' 4.2'' 7.3C 8.8' 

LLSBOW21 5.5" 7.5* 6.5' 7.0' 6.9*' 13.7* 9.8' 

ULSBOW21 2.0" 2.4' 2.4* 2.5^ 2.8' 5.6' 3.9' 

LLSB032 5.5" 8.5" 9.3" 12.1" 12.3" 19.1" 27.0" 

ULSB032 2.3" 3.9' 5.5' 6./ 7.1*' 14.2* 17.1* 

LLSBOW32 5.5" 7.8** 8.0* 7.5* 6.7*'" 18.9" 14.8' 

ULSBOW32 2.0* 2.9' 3./ 3.0' 4.8''"' 13.9* 7.9' 

Polar LLSB021 2.6" 2.9' 3.5* 3.7*'' 4.0*' 4.1* 4.2* 
compound 

ULSB021 2.5" 3.0' 3.l' 3.4' 3.5'' 3.4' 3.9*' 
percentages b c 0. b A h 

LLSBOW21 2.2 3.0' 3.1' 3.8 4.2* 4.3 4.1 

ULSBOW21 2.6" 2.9' 2.9' 3.5"' 3.6' 3.5' 4.2* 

LLSB032 2.6" 3.3" 4.0" 3.9* 4.7" 4.8" 4.7" 

ULSB032 2.5" 3.1* 3.7** 3.9* 4.2** 4.3* 4.2* 

LLSBOW32 2.2" 3.3' 3.8** 4.1" 4.0*' 4.1* 4.3* 

ULSBOW32 2.6" 3.2' 3.5* 3.6*'' 3.6'' 3.7' 3.6' 

Sensory for LLSB021 8.4" 7.5" 7.5** 5.5** 5.2** 4.9" 3.2" 
overall oil 

ULSB021 7.8' 7.5" 7.5" 5.7** 5.7" 4.1**' 3.4" 
quality' 

LLSBOW21 8.4" 7.5" 6.9"'* 6.3" 4.9**' 3.5**' 3.3" 

ULSBOW21 7.7" 6.8" 6.6"*' 5.2** 4.8**' 4.4** 3.4" 

LLSB032 8.4" 7.2" 6.2*' 5.1** 4.2*' 3.6**' 3.3" 

ULSB032 7.8* 7.2" 6.6**' 5.4** 4.5*' 2.9' 2.7" 

LLSBOW32 8.4" 7.1" 5.5' 5.1** 4.1*' 
^ j•j&ib.c 

2.7* 

ULSBOW32 7.7* 7.1" 
, „a,b,c 
0.3 4.9* 4.1' 3.0*' 3.2" 
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ABSTRACT: The effects of linolenic acid (18:3) concentration, combined with TBHQ 

addition, temperature and storage time, on the flavor stability of soybean oils were evaluated. 

A descriptive panel was trained to evaluate the overall oil quality and the intensity of 

individual flavors of soybean oils during 12-month storage under fluorescent light at both 
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21°C and 32°C. Chemoff faces were used to achieve a simplified and integrated 

interpretation of the multivariate sensory data and to facilitate the interpretation of the vast 

amount of the data. When fresh, soybean oil (SBO) with low 18:3 (2.2% 18:3, LLSBO) 

showed better flavor stability than did SBO with ultra-low 18:3 (1.0% 18:3, ULSBO). This 

trend disappeared during storage. During 10- to 12-month storage, a painty flavor became 

predominant in all oils, which may have made it difficult for panelists to detect differences in 

treatment effect on flavor characteristics of soybean oils. During early storage, oils with 

TBHQ addition had poorer overall oil quality and stronger beany, painty and fishy flavors 

than did oils without TBHQ addition. This trend disappeared as storage time progressed to 10 

months. Oils stored at 32°C had poorer overall oil quality, and stronger painty, fishy and 

beany flavors than did oils stored at 21°C starting from 2-month storage. 

KEY WORDS: Chemoff faces, lipid oxidation, low-linolenic acid, multivariate data 

analysis, oil stability, senjory gva/wafz'on, soybean oil, ultra-low linolenic acid. 

Soybean oil is very prone to flavor deterioration, and sensory evaluation provides the 

ultimate judgment of its flavor stability. The recommended practice of the AOCS is to 

evaluate overall oil quality and the intensity of individual flavors. The number of flavors that 

can be present in soybean oil can be as many as 15, or more (1). Therefore, the resulting data 

are multivariate, because they are made up of complex interrelated elements. The standard 

display of data, such as numbers, may obscure the recognition of relationships among 

elements. To make overall perception and interrelationships immediately apparent, and to 

provide a more accurate judgment as a well-integrated pictorial display, the multivariate data 
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analysis methods may be used. There are reports of the use of multivariate data analysis 

methods, such as principal component analysis (PCA), factor analysis, and generalized 

procrustes analysis in the sensory evaluation of different food products (2, 3,4); however, the 

use of Chemoff faces to characterize sensory evaluation of food products or soybean oil was 

not found in the literature. 

This paper focuses on the descriptive sensory analysis of soybean oil flavor stability and 

the use of Chemoff faces (5) to simplify the interpretation and graphically display an 

abundant amount of sensory data. This method involves letting the size, shape, or orientation 

of each feature of a cartoon face represent a particular variable (overall flavor quality or the 

individual flavor descriptor in the current work) (6). Thus, one might let the area of the face 

represent overall flavor quality of the oil, the shape of the face a fishy flavor, the length of 

the nose a third characteristic, and so on. Programs have been developed that allow the 

representation of up to 15 (7) or 20 variables (8). It is these characteristics that inspired the 

authors to explore the use of Chemoff faces. 

The specific objectives of the current work were to report the sensory evaluation, by using 

Chemoff faces, of soybean oils with low-linolenic acid (18:3, -2.2 %) and ultra-low-18:3 

concentrations (-1.0 %), with and without the addition of TBHQ, and at two storage 

temperatures (21 °C and 32 °C) during storage for 12 months. A related paper (9) gave 

complete information on the physical, chemical and general sensory tests used to assess these 

oil treatments. 

MATERIALS AND METHODS 
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.Soybean oik aw/ Soybeans (GZycmg max) with low-18:3 (LL, 2.2%) and ultra-low-

18:3 (UL, 1.0%) concentrations, grown in summer 2000 in Iowa (weather zone 2), were 

obtained from Protein Technologies, Inc. (St. Louis, MO). The LL soybeans were crushed 

by the Montana Power Group in Culverston, Montana, and the UL soybeans were crushed at 

the POS Pilot Plant Corporation in Saskatoon, Saskatchewan, Canada. Both oils were 

hexane-extracted, and refined, bleached, deodorized, and bottled at the POS Plant. Citric acid 

(50 ppm) was added to the oils during the cool-down stage of deodorization. The antioxidant, 

TBHQ (100 ppm), was added to half of each oil type at the deodorization step before bottling 

in co-extruded polyethylene terephthalate (PET) plastic bottles. The bottles were sparged 

with nitrogen until they contained less than 2% oxygen in the headspace, then sealed. 

Bottled oils were sent to Iowa State University (ISU, Ames, IA) for evaluation. Thus, four 

SBO treatments were tested, including low-18:3 SBO (LLSBO), LLSBO with the addition of 

100 ppm TBHQ (LLSBOW), ultra-low-18:3 SBO (ULSBO), and ULSBO with the addition 

of 100 ppm TBHQ (ULSBOW). The LLSBO and LLSBOW contained 11.1% palmitic acid, 

5.0% stearic acid, 23.0% oleic acid, 58.7% linoleic acid, and 2.2% linolenic acid. The 

ULSBO and ULSBOW contained 11.4% palmitic acid, 5.0% stearic acid, 25.2% oleic acid, 

57.4% linoleic acid, and 1.0% linolenic acid. For each of these four treatments, two bottles 

were retained at arrival, and half of the remaining bottles were stored under fluorescent light 

with uniform exposure of 70-foot candle light intensity at 21°C and the other half at 32°C, 

respectively, for 12 months. Thus, there were eight treatments during storage. Duplicate 

bottles of oil from each treatment were analyzed in duplicate at 0, 2, 4, 6, 8, 10, and. 12 

months of storage for flavor characteristics. 
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CAgm/ca/ awf ofAgr mefAodj. A related paper presents complete 

information on the impact of 18:3 content, TBHQ addition, storage temperature and storage 

time on PV, oil stability index, p-anisidine value, polar compounds, and Lovibond colors, 

including statistical evaluations of the differences (9). 

Faffy ocwf compojzficvz GC. Fatty acid compositions of SBO were determined by 

converting TAG into FAME according to a method described by Hammond (10). The GC 

conditions were the same as described by Shen ef a/. (11). 

Sgfijo/y eWwafzofw. The sensory evaluations were conducted according to AOCS 

Recommended Practice Cg 2-83 (1) as described elsewhere (9). 

Faces. Statistical software S-plus 6.0.3 Release 2 for Microsoft Windows was used to 

draw the faces (7). In this software, the facial features and their sequences are: 1-area of face: 

2-shape of face; 3-length of nose; 4-location of mouth; 5-curve of smile; 6-width of mouth, 

and so on (Table 1). Thus, the area of the face represents the value of the first variable (flavor 

attribute, in this case); the shape of the face represents the second flavor attribute, and so on. 

The researcher can perform permutation by arranging the order of flavor attributes in the data 

table to get the best-represented data by the faces. Also, all facial features do not need to 

have a variable assigned. After several attempts of permutation to assign flavor attributes to 

different facial features, we decided upon the correspondence between flavor attributes and 

facial features shown (Table 1). The range in the dimensions and/or shape of each facial 

feature was from 1 to 10, with 10 representing "excellent" and 1 representing "poor" for each 

of the flavor attributes. We chose not to assign an attribute to the length of the nose 

(dimension # 3, Table 1), and to dimensions # 7 through # 15; thus, the computer program 

assumed the mid-value of 5 for these unassigned facial features. The numerical data supplied 
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by the sensory panelists for each attribute were used by the statistical program to draw a face 

representing the sensory evaluation of a specific oil at a specific time. The data of all flavor 

attributes of a specific oil at a specific time, then, makes up the "face" for that oil at that time. 

The S-plus command was designated as follows: faces(as.matrix(facesl), 

labels=row.names(faces 1 ), nrow=4, ncol=8). The term, "faces" is the command to draw a 

face plot; "as.matrix" defines the data table to be used by faces command; "faces 1 ' is the 

name of the data table to be used by the faces command; "labels= row.names(facesl)" 

means that each of the faces will be labeled by the row name of data table faces 1; and 

"nrow=4, ncol=8" means there will be 4 rows and 8 columns of faces displayed on one page 

as shown in Figures 1. 

Ana/yjgj. The Pearson correlation coefficients between the intensity of 

individual flavors and overall flavor quality scores of SBO were calculated by using SAS 

software (12). 

RESULTS AND DISCUSSION 

Overa///Zovor gwoZify. Initially, LLSBO and LLSBOW had better overall oil quality than did 

ULSBO and ULSBOW, respectively (data summarized in Table 2 from reference (9). The 

differences tended to reverse as storage progressed, with both UL treatments having better 

overall scores in later months of storage. This observation was consistent with the results for 

the PV of the oils (9). That is, when TBHQ was absent and at the same storage temperature, 

the ULSBO initially had significantly greater PV than did LLSBO. But the trend reversed 

during storage by 10 months at 21°C and by 8 months at 32°C (9). The TBHQ addition 

tended to have a negative effect on overall oil quality by sensory evaluations, especially 
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through 8 months of storage. By 10 and 12 months, however, TBHQ addition tended to 

minimize the poor overall oil quality scores, likely because of its ability to retard lipid 

oxidation (9). Generally, oils stored at 21°C had better overall flavor quality than did oils 

stored at 32°C with the same linolenic acid and TBHQ level, especially as storage time 

increased between 4 and 10 months. The overall appearance of the faces in figures 1 illustrate 

these quality differences at a glance. 

Tnfgnsify of iWzvfWwaZ/kvorj. The individual flavors detected by panelists in oils included 

nutty, buttery, corny, beany, hydrogenated, burned, weedy, grassy, rubbery, melon, painty, 

fishy, bitter taste, astringency, rancid and oxidized. The predominant attributes (i.e. those 

attributes detected by at least 3 panelists in one session for at least 5 sessions throughout the 

evaluation time) detected by panelists in the soybean oils included painty, fishy, grassy, 

beany, nutty, and buttery flavors. The Pearson correlation coefficients between the intensity 

of each of these flavors and overall flavor quality scores were 0.870, 0.731, 0.687, 0.681, 

0.403. and 0.002, respectively. That is. the more intense (lower values) the flavors of painty, 

fishy, grassy and beany flavors, the poorer (lower) the overall flavor quality scores in sensory 

evaluations. There were no correlations between the intensity of nutty and buttery flavors and 

overall flavor quality scores. 

Faces. Each face in fig. 1 represents both the overall oil quality as well as the intensity of 

individual flavors of one oil treatment at a specific storage time. In other words, it is a highly 

condensed version of the data. The faces can be used to compare treatment impact on flavor 

characteristics of soybean oils. Initially, faces representing LLSBO were more "happy" and 

round than faces of ULSBO. The differences between the LL and UL SBO tended to 

disappear at about 4-month storage. The faces representing SBO with TBHQ addition were 
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less "happy" than faces of SBO without TBHQ addition through 8 months of storage, and 

this difference tended to disappear at 10-month storage. Generally, faces of oils stored at 32 

°C were closer to "poor" than faces of oils stored at 21 °C, and this difference became clearer 

at 8-month storage. 

The faces can also be used to detect, at a glance, the time point at which an individual 

soybean oil changed its multivariate sensory characteristics from relatively "excellent" to 

"poor". For example, initially, all the faces representing oils at arrival (0-month storage) were 

very close to the excellent example. Even so, faces of ULSBO and ULSBOW were not as 

"happy" as the faces of LLSBO and LLSBOW. At 2-month storage, faces were less round 

and began to develop features that were less "happy" than faces at 0-month storage time. If 

the face of 4-LLSBOW32 (SBO with LL concentration, 100 ppm TBHQ addition, stored at 

32°C and at 4-month storage time) was viewed simply as an outlier, the 8-month storage time 

seems to be when the faces began to turn "poor" as demonstrated by the consistently smaller, 

thinner, and longer face, the downward curvature of the smile, the longer distance between 

the nose and mouth, and the smaller width of the mouth. The faces at 6-month storage were 

in transition from good to bad. By the end of 12-month storage, all the faces of oils were very 

close to the "poor" example. 

Both flavor quality scores and multiple individual flavors for the soybean oils represent 

typical multivariate data. The overall, combined sensory characteristics of soybean oils, 

however, represent an integrated perception. If the data of the intensity of all individual 

flavors were presented in the same way as the flavor quality scores in Table 2, one would 

need at least four more similar-sized tables. Repetitious viewing of large tables of data is 

tedious as described by the two 19* century economists, Jocob and Howard, "Getting 
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information from a table is like extracting sunlight from a cucumber" (13, 14). Thus, to 

improve data interpretation, the method of Chemoff faces was used to represent the multi-

factored changes of flavor characteristics of soybean oils during storage in a straight-forward 

pictorial display. 

The method of using Chemoff faces in other applications has been criticized, because of 

the effect associated with a particular subjective facial feature; for example, curvature of the 

smile and/or other certain facial features may be more informative than other features (5, 15). 

A wisely chosen featural assignment, however, limits this possibility. In our case, for 

example, the painty, fishy, and beany flavors, significant off-flavors associated with soybean 

oil flavor instability, were assigned to the shape of the face, curvature of the smile, and width 

of mouth, respectively, which have major impact on facial expressions. In other studies, 

where there are no major attributes, the assignment of a variable to a more informative facial 

feature can be avoided. Therefore, the permutation of the variable assignment to a facial 

feature, as performed in this application, is necessary to get the best data representation by 

the faces. 

Finally, the disadvantage of subjectivity, which is sometimes noted when using Chemoff 

faces, actually may be an advantage when applied to sensory evaluation analyses. To the 

consumer, excellent sensory quality of a food product makes them "happy". This paper 

demonstrates the use of Chemoff faces as an effective procedure for researchers to simplify 

the presentation of sensory characteristics of edible oils, and to obtain an integrated judgment 

of the overall flavor characteristics of soybean oils at a glance. People react quickly to faces; 

thus, we envision the popularity of Chemoff faces in the sensory evaluation of a variety of 

food products, as well as other applications described by other authors (14). 
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Table 1 
Correspondence between the Assigned Facial Features and 
the Numerical Values Assigned to the Facial Features 

Dimension Facial feature Flavor attribute" Numerical value assigned'' 

1 Area of face Overall oil quality 1--10 &om sensory data 

2 Shape of face Painty 1--10 from sensory data 

3 Length of nose - 5 

4 Location of mouth Grassy 1--10 from sensory data 

5 Curve of smile Fishy 1--10 from sensory data 
6 Width of mouth Beany 1--10 from sensory data 

7 Location of eyes - 5 

8 Separation of eyes - 5 
9 Angle of eyes - 5 

10 Shape of eyes - 5 

11 Width of eyes - 5 

12 Location of pupil - 5 
13 Location of eyebrow - 5 

14 Angle of eyebrow - 5 
15 Width of eyebrow - 5 

a The sign means no flavor attribute was assigned to that facial feature and S-plus 

assumes a raid-value of "5" to that feature to draw a complete face. 

* Values of 10 (excellent) to 1 (poor) were given to each flavor characteristic of oils, 
according to the panelists' scores. 
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Table 2 

Sensory Evaluation Scores" of Overall Quality of Soybean Oils 
Storage time ( Month) 

Oils* 0 2 4 6 8 10 12 

LLSB021 8.4 7.5 7.5 5.5 5.2 4.9 3.2 
ULSB021 7.8 7.5 7.5 5.7 5.7 4.1 3.3 

LLSBOW21 8.4 7.5 6.9 6.3 4.9 3.5 3.4 
ULSBOW21 7.7 6.8 6.6 5.2 4.8 4.4 3.4 

LLSB032 8.4 7.2 6.2 5.1 4.2 3.6 3.3 
ULSB032 7.8 7.2 6.6 5.4 4.5 2.9 2.7 

LLSBOW32 8.4 7.1 5.5 5.1 4.1 3.7 2.7 
ULSBOW32 7.7 7.1 6.3 4.9 4.1 3.0 3.2 

Comparison' 

LLSBO 8.4 7.3 6.5 5.5 4.6 3.1 3.1 

ULSBO 7.7 7.1 6.8 5.3 4.8 3.6 3.2 

W/O TBHQ 8.1 7.3 7.0 5.4 4.9 3.9 3.1 
WTBHQ 8.0 7.1 6.3 5.4 4.5 3.7 3.1 

21°C 8.1 7.4 7.1 5.7 5.1 4.2 3.3 
32°C 8.1 7.1 6.1 5.1 4.2 3.3 3.0 

" A score of 10 = excellent, a score of 1 = very poor (Ref 1). 

"Refer to footnote b in table 1 for definitions of LLSBO and ULSBO. 

Presence of W = with TBHQ; absence of W = without TBHQ; 

21 or 32 refers to storage temperature at 21 and 32°C. 

' Comparison of the means at two levels of one treatment factor 

regardless of the levels of the other two factors. 
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Figure 1. Faces representing the two extreme examples and the sensory characteristics of soybean oils (SBO) during storage. 

Excellent and poor examples arc given in the first and last column. LL = SBO with low-linolenic acid (18:3); UL = SBO with 

ultra-low 18:3; Presence of W means SBO with 100 ppm TBHQ addition; The 0, 2, 4, 6, 8, 10, and 12 means SBO stored for 0 

(fresh), 2,4, 6, 8,10, and 12 months, respectively; The 21 and 32 = storage temperature at 21°C and 32 °C, respectively. 
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ABSTRACT: The objective of this project was to determine the optimum percentage of 

oleic acid (OA) in soybean oils (SBO) that could be achieved by blending high-oleic (HO, 

79% OA) and control (conventional SBO, 21.5% OA) to obtain maximum frying stability 

while retaining good flavor potential. The control and HO SBO were tested as is, as well as 

blended in different ratios to make three blended oils containing 36.9%, 50.7%, and 64.7% 

OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively, in addition, a low-linolenic 

(LL) SBO contained 1.4% linolenic acid and 25.3% OA). White bread cubes (8.19 cm^) were 

Med in each of eighteen oils (6 treatments x 3 replicates). In general, the results suggested 
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that the overall stability of the six oil treatments from the best to the poorest was: 79%OA, 

65%OA, 51%OA, LL ^ 37%OA, and Control , as measured by the oil stability index, 

conjugated dienoic acid concentration, viscosity, polar compound percentage and Hunter Lab 

colors of the fried oils, and PV of the oil extracted from fresh and stored bread cubes. 

KEY WORDS: Conjugated dienoic acid, fried bread cubes, free fatty acids, frying, heat 

stability, /wgA-o/gfc ac/d o#, low-linolenic acid soybean oil, oxidative stability, polar 

compounds, viscosity. 

Soybean oil (SBO) has a good nutritional profile because of its high proportion of 

unsaturated FA, but the oil has poor oxidative stability and is prone to flavor deterioration. 

The fatty acids, linoleic (18:2) and linolenic acid (18:3) in SBO oxidize quickly and are the 

major contributors of the poor stability of SBO (1, 2). To improve oxidative and flavor 

stability, the SBO may be hydrogenated to reduce the concentration of PUFA (and increase 

the saturated FA); however, fro/# fatty acids (fFA) are formed and saturated fatty acids are 

increased during this process. Because consumption of a diet high in fra/za F As has been 

reported to raise total and low-density lipoprotein (LDL)-choleslerol and lower high-density 

lipoprotein (HDL)-cholesterol levels (3) and a diet high in ratio of saturated fatty acids to 

PUFA has been shown to increase serum total cholesterol (4), indicators of increased 

cardiovascular risk, lowering the 18:3 content to a level similar to that obtained by partial 

hydrogénation, but without f/wzj formation, has been an objective of plant breeders. The 

SBO with different lowered levels of 18:3 have been developed and studied (5, 6, 7). The 

oxidative and flavor stabilities of SBO containing as low as 1.0% 18:3 were compared to 
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SBO containing 2.2% 18:3 in a previous study (6, 7). The 1.0% 18:3 oil was more stable than 

the 2.2% 18:3 oil by oxidative and flavor stability indices. On the other hand, the 18:3 is an 

essential fatty acid belonging to a group of fatty acids called omega-3 fatty acids, which 

reduce or help prevent certain chronic diseases (8). Thus, reducing 18:3 to a minimal level 

may diminish the health benefits of SBO. Therefore, developing SBO with enhanced 

stability, but still retaining some 18:3, with no formation of fFA, and with a maximal amount 

of total unsaturated FA is desirable. 

Studies have shown that the oxidation rate of OA is much slower than that of the PUFA, 

18:2 and 18:3 (9). A diet high in monounsaturates may also help to reduce raised levels of 

total plasma cholesterol without reducing the HDL-cholesterol level (10). Therefore, the 

incentive to breed HO soybean (reducing, but not eliminating 18:2 and 18:3, reducing total 

saturated FA, and eliminating fFA) becomes obvious. Also such an oil would require no 

additional processing, thus could result in more profit for farmers and processors (11). The 

experiment in this study included control (conventional SBO, 21.5% OA) and high-oleic 

SBO (HO, 79% OA) which were tested as is, as well as blended in different ratios to make 

three blended oils containing 36.9%, 50.7%, and 64.7% OA, abbreviated as 37%OA, 

51 %OA, and 65%OA, respectively, in addition, a low-linolenic (LL) SBO contained 1.4% 

linolenic acid and 25.3% OA. One objective of this project was to determine the optimum 

percentage of OA in SBO that could be achieved by blending 79%OA and control to obtain 

maximum frying stability while retaining good flavor potential. It is a common belief that the 

blended oils can be only as stable as the "poorest" oil. A second objective was to determine 

the impact of blending a relatively unstable control SBO with a highly stable HO SBO. 
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MATERIALS AND METHODS 

SBOs and design. Soybeans (G/ycme max) with high-oleic acid (HO, 79% OA), low-

linolenic acid (LL, 1.4% with 25.3% OA), and conventional (control, 21.3% OA) fatty acid 

compositions, grown in summer 1998 in Iowa (weather zone 2), were obtained from Protein 

Technologies, Inc. (St. Louis, MO). The soybeans were crushed and the oils were hexane-

extracted, in triplicate, in the Pilot Plant of the Center for Crops Utilization Research, Iowa 

State University (ISU), Ames, Iowa, following a previously published method (11). All the 

oils were refined and bleached following AOCS official methods Ca 9a-52, and Cc 8a-52, 

respectively, (12), and deodorized following the procedure described by Stone and 

Hammond (13). Triplicate sets of each oil were refined, bleached, and deodorized separately. 

Citric acid (100 ppm) was added to the oils during the cool-down stage of deodorization 

before placement in high-density polyethylene (HDPE) plastic bottles. The bottles were 

sparged with nitrogen, then sealed and stored at -10°C until used for testing. 

Six total SBO treatments were evaluated for frying stability, including the three SBOs just 

mentioned (Control, LL, and the 79%OA) plus three oil blends prepared as follows: 1) 75% 

of the Control and 25% of the HO (37%OA), 2) 50% of the Control and 50% of the HO 

(51%OA), and 3) 25% (by weight) of the Control and 75% of the HO (65%OA). 

Frying. Eighteen frying sessions (three simultaneous sessions in one day) were carried 

out (six oil treatments evaluated in triplicate). At each frying session, 220 g of an oil 

treatment was weighed into a Teflon-coated 473-mL electric baby fryer (National Presto 

Industries Inc., Eau Claire, Wisconsin) and the oil was then heated to 185°C within 10 min. 

The oil was heated at 185 ± 5°C for 2.5 h before frying. Eight 5-piece batches of crust-free 

bread cubes (2.54 cm x 2.54 cm x 1.27 cm) were fried for 1 min per batch at 3-min intervals. 
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Therefore, the actual frying of the cubes was completed within 0.5 h. The fried bread cubes 

were then drained and cooled to room temperature. Half of the bread cubes was used 

immediately for testing including evaluating PV of the extracted oil. The other half of the 

bread cubes was stored, loosely covered, at 60°C in the dark for 3 days before evaluating PV 

of the extracted oil by the same procedure used on fresh bread cubes. The oil remaining in 

the fryer was maintained at 185 ± 5°C for another 7 h for a total of 10 h heating on day 1, 

then cooled to 25°C. The oil was heated at 185 ± 5°C for another 10 h on day 2. Aliquots 

from each oil were taken before heating, immediately after frying, at the end of day 1 heating 

(10 h), and at the end of day 2 heating (20h). 

acid compoMfion &y GC, focop&em/ confe/zW jfaWzfy and 

po/ar compound,?. Fatty acid compositions of SBOs before frying were determined according 

to a method described by Hammond (14). The GC conditions were the same as described by 

S hen et al. (11). Calculated oxidizability and iodine value of the oils were determined 

according to formulas based on the fatty acid composition of the oils (9, 12). Tocopherol 

contents, the OSI, and the percentage of polar compounds of the oils before frying were 

determined according to AOCS Official Methods Ce 8-89, Cd 12b-92, and Cd 20-91, 

respectively (12). The HPLC conditions were the same as described elsewhere (6). 

FFA. The percentage of FFA as OA of the frying oils was determined according to the 

AOCS Official Method Ca 5a-40 (12) as modified by Rukunudin ef a/. (15). 

yfjccwify. Viscosity of the oils before and after frying and heating was measured by using 

a Brookfleld DV - II + viscometer (Brookfield Engineering Laboratories Inc., Stoughton, 

MA). One milliliter of oil was placed on the plate of the viscometer with cone spindle CP-42; 
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the viscosity of the sample was read in c? (1 c? = 1 mPa.s) directly from the viscometer 

maintained at 40°C by a circulating water bath. 

Con/wgaW dienoic acid. The percentage of conjugated dienoic acid of the frying oils 

was determined according to the AOCS Official Method Ti la-64 (12) as a measurement of 

the diene conjugation of unsaturated linkages present in the fatty esters. 

CoZorj. Colors of the frying oils were measured with a HunterLab colorimeter (Hunter 

Associate Laboratory, Inc., Reston, Virginia) at a 10° field of vision with illuminant D65. Oil 

(13.0g) was placed in a 60 x 15 cm standard disposable petri dish and the measurements 

were recorded in Hunter units of L (L = 0 (black), L = 100 (white)), a (+ a = red, - a = 

green), and b (+ b = yellow, - b = blue). 

Peroxide vaiwgj (f V) ^ying and f/ze gxfracW oii /rom cw6e^. 

The PV of the oils before frying was determined by the Stamm test as modified by Hamm et 

al. (16). Commercially available tetrachloroethane was purified as described elsewhere (6). 

Oil from the fried bread cubes (3.0 g) was hexane-extracted as previously described (17). 

The extracted oil was used to determine the PV of the fried bread cubes by the same 

procedure as just mentioned. 

Aafiafica/ anafyjij. There were 6 treatments x 3 replicates. The SAS full-way variance 

procedure was used to analyze the data (19). Differences in mean values among treatments 

were determined by the least significant difference test at a = 0.05, unless listed otherwise. 

RESULTS AND DISCUSSION 
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Faffy acid composirioM, caZcw/afed o^idiza2?iZi(y, ca/cw/afed iodine vaiwe (/V) (Ta6Ze 7). The 

control oil had much greater palmitic (16:0), 18:2, and 18:3 acid concentrations than did the 

79%OA, the blended treatments were intermediate in these FA levels, based on the ratios of 

each oil percent. The LL was similar in FA compositions to the control, except for its greatly 

reduced 18:3 level. Clearly, the calculated oxidizability and IV increased in the order: 

79.1%OA, 65%OA, 51%OA, 37%OA, LL (25.3% OA), and control (21.5% OA). The 

greater the OA concentration in an oil, the lower the calculated oxidizability and IV. The 

effect of reduced linolenic acid concentration on the indices of calculated oxidizability and 

IV was not as great as the effect of elevated OA concentration. 

Tbçop&emA? (TaWe 7). There were no differences in the concentrations of total tocopherol 

concentrations among 79.1%OA, control and LL SBO, and any of their blends. 

Ckidafive sfaMify indices (OS/) (Ta6fe 7). The OSI of all SBO treatments suggested an 

order of heat stability from greatest to lowest as: 79%OA, 65%OA, 51%OA, LL, 37%OA, 

control. These values are consistent with the predicted order by oxidizability and IV except 

for the LL treatment, which tended to be more stable than 37%OA as indicated by OSI 

instead of just slightly more stable than the control as predicted by calculated oxidizability 

and IV. The 65%OA (with 25% by weight the control blended in) had a big drop in OSI 

compared to 79%OA (Fig. 1 b), showing a trend of OSI that can not be predicted linearly by 

the OA concentrations in the oils. However, there were no differences in OSI values among 

51%OA, 37%OA, control and LL. 

FFA (TaWe 2). The FFA of all oil treatments increased as heating time increased. There 

were no significant differences in FFA among fresh SBOs and among the oils immediately 

after frying the bread cubes, except that the control had greater FFA than did LL immediately 
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after frying. Even though significant, the difference was small. At 10 and 20 h of heating, 

there tended to be greater FFA developed with increased 18:1 concentration of the oil, except 

for LL at 20 h. The greater 18:1 concentration, the greater the FFA. Previous researchers 

found the same trend in frying of potato chips (19). These findings were opposite from those 

of the OSI test. Perhaps this paradox was a result of a limitation of the method used. 

Generally, the oils that had greater 18:1 concentration were less viscous after 20 h frying, so 

the FFA may have been better dissolved in the alcohol used for titration of the FFA, resulting 

in a greater measured content than other, more viscous oils. The FFA is an important marker 

for oil quality. The recommended FFA in fresh refined, bleached, and deodorized oils is 

0.05% maximum (20). 

Vijcojify (TaWe 2). Like the change of FFA in the frying oil treatments, the differences 

were small among fresh SBOs and among the oils immediately after frying the bread cubes. 

At 20 h heating, however, the oil viscosity increased with decreased 18:1 concentration, 

except that the LL was less viscous than 37%OA instead of the control as predicted by their 

18:1 concentration order. This viscosity order suggests that the greater the 18:1, the more 

stable the oil was during frying, except for the LL treatment, whose very low 18:3 

concentration simultaneously with its greater 18:1 elevated its stability above that of the 

37%OA instead of just above that of the control as would be predicted solely by the 18:1 

concentration order. 

Con/wgafed dignoic acid (CDA) (TaWe 2). There were no differences in CDA among the 

fresh oils. Immediately after frying, and at 10 and 20 h heating, the greater the 18:1 

concentration in the oils, the less the CDA formed during frying and heating, except that the 

LL treatment had less CDA than did 37%OA treatment. Again the LL treatment's very low 
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18:3 concentration along with its greater 18:1 percentage elevated its stability above that of 

the 37%OA. 

fo/or compounds. There were differences among oils in polar compound percentages only 

at 10 h heating with the greater the 18:1 concentration, the lower the polar compound formed 

during frying. Again the LL was very close in polar compound percentage to that of the 

37%OA and the control. At 10-h heating, the polar compound percentages in all oils 

exceeded the maximum limit for used frying fats based on the German standard of 27% total 

polar compounds (21). At 20 h heating, the values were all similar, likely because the 

extensive breakdown in all oils had evened out. In this frying study, relatively small 

quantities of oil were used in each baby fryer, and only a small quantity of food was fried 

thus maintaining the amount of polar materials that are usually carried away by the fried 

food, which may have contributed to the great quantity of polar compounds in the frying oils. 

Cofors. There were increases in darkness, redness and yellowness in all oils as the length 

of heat treatment increased. The 79%OA was significantly less dark, red or yellow than the 

other oils at the end of 20-h heating, and there were no differences in darkness, redness, and 

yellowness among the other treatments indicating the 79%OA was the most heat stable oil 

among all treatments.. 

f V of f/ze yresA oik wzd fAe oik ezfracW /rom f&g ^ried bread The order of PV 

from the least to the greatest in the fresh oils and in the oils extracted from fresh and stored 

bread generally was in reverse order of the 18:1 concentration in the oils except for the LL 

treatment. The reduced 18:3 concentration of the LL treatment elevated its stability above the 

order predicted by its 18:1 concentration in the fresh oil and stored bread cubes. The 79%OA 
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was the most stable oil and control was the least stable oil during storage of the fried bread 

cubes according to the PV. 

Industry perceptions of blended oil quality would predict that the blended oils would be 

only as stable as the poorest oil blended in them. In actuality, the impact of blending on oil 

stability indices at 20 h heating was generally directly and linearly related to the % of control 

oil, and furthermore to the OA % for calculated oxidizability, IV, conjugated dienoic acid 

content, and viscosity (Figure 1. a - d). The impact of blending oils on the FFA, PV, and 

polar compounds was not linearly related to the ratios of the control in the blended oils but 

better than would be predicted based on percentage of the control (Fig 1 e - g). The OSI and 

HunterLab color values for the oils at 20 h heating showed that the presence of a small 

amount of the control in the blended oils greatly reduced the stability (Fig 1 h to k). 

Overall, the 79%OA was the most stable oil treatment. The greater the 18:1 concentration, 

the greater the stability of the oil treatment, except that the greatly reduced 18:3 

concentration in the LL treatment elevated its stability to be greater than or equal to that of 

the 37%OA, making it more stable than the control. Blending a poor stability oil, such as 

conventional SBO, with a high stability oil may had a profound effect only on the OSI and 

color of the blended oils but not on the other stability indicators. 
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Figure 1. The impact of the % of the control present in the oil on the stability indices at 20 h heating. 

The vertical axes are calculated oxidizability and iodine value, conjugated dienoic acid (%), viscosity (cP), FFA (% oleic acid), 

peroxide value (Meq/kg), polar compound (%), oil stability index (h), and HunterLab color values. The horizontal axis, 0, 25, 50, 

75 representing the percentage of control (by weight) in the oil and LL representing the low-linolenic acid SBO treatment. 
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Figure 1. (continued) 
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Table 1 

FA Composition (area %), Calculated Oxidizability", Calculated Iodine Value*, Tocopherols and Oil 

Stability Indices of Soybean Oil (SBO) Treatments 
Fatty Acid Methyl Esters Oxidiz Iodine Tocopherols (ug/g)' 

OSI' Oils 
16:0 18:0 18:1 18:2 18:3 ability value a y 8 Total 

OSI' 

79%OA 6.9 3.8 79.0 6.5 3.8 2.3' 89^ 113' 722" 495" 1329" 31.74" 

65%OA 7.8 3.9 64.7 18.7 4.9 3.6' 101' 156' 722" 457"'* 1335" 13.02* 

51%OA 9.0 4.1 50.7 30.3 6.0 4.9' 112' 199' 722" 419*' 1340" 8.63*"' 

37%OA 9.9 4.3 36.9 41.8 7.1 6.2" 123' 242* 723" 381'' 1346" 6.48*' 

Control 11.2 4.4 21.5 54.8 8.0 7.6" 134" 285" 723" 343' 1352" 5.28' 

LL 10.6 4.5 25.3 58.2 1.4 6.6* 126* 274" 731" 286' 1290" 8.13*' 

* Oxidizability = [oleate% + 10.3 (linoleate%) + 21.6 (lino!enate%)]/100 (Ref. 9). 

* Iodine values were calculated from the FAME profile, according to AOCS Official Method Cd lc-85 (Ref. 12). 

' 79.1%OA = high-oleic acid (OA) SBO. The 65%OA, 51%OA, 37%OA = three blends of control and 

79%OA. Control = conventional SBO. LL = low-linolenic acid SBO. 
dTocopherol concentrations in 79%OA, Control, and LL SBO were determined. Tocopherol concentrations 

in the three blended oils were calculated. 

' OSI = Oil stability indices. 

Values in the same column for each test with supercripts in common were not significantly different (p < 0.05). 
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Table 2 
FFA ( % oleic), Viscosity 
Compound (%), Hunter 

Frying SBOs" and Fried 

(cP), Conjugated Dienoic Acid (%), Polar 
Lab Colors (L, a, b) and PV (meq/kg) of 

Bread Cubes 
Frying time (h) 

Analysis" 
Soybean 

oil 

0 
Immediately 

after frying 

10-h 

heating 

20-h 

heating 

FFA 79%OA 0.04" 0.18"-* 0.57" 1.10" 

65%OA 0.04" 0.18"-" 0.45" 1.06"* 

51%OA 0.04" 0.18""* 0.33' 0.90*' 

37%OA 0.04" 0.17""* 0.27' 0.77' 

Control 0.03" 0.19" 0.31' 0.43^ 

LL 0.04" 0.16* 0.25' 0.77' 

Viscosity^ 79%OA 31.9" 33.9" NA 189.9^ 

65%OA 29.1* 32.1""* NA 235.2'"^ 

51%OA 28.8* 31.9""* NA 271.0' 

37%OA 27.4*' 32.2""* NA 295.4*' 

Control 24.8^ 30.0* NA 358.2"-* 

LL 26.7^ 29.3* NA 289.5*' 

Conjugated 79%OA 0.10" 0.44' 0.97' 1.49' 

Dienoic Acid 65%OA 0.10" 0.65*' 1.69^ 2.0/ 

51%OA 0.10" 0.84** 2.34' 2.57' 

37%OA 0.10" 1.09" 2.90* 3.06* 

Control 0.10" 1.15" 3.41" 3.62" 

LL 0.10" 0.91"* 3.33" 3.60" 

"See footnote c in Table 1 for deGnitions of SBO treatments. 

Values in the same column for each test with supercnpts in common were not 

significantly different (p < 0.05). 

^ Viscosity and colors of the oils at the end of first 10-h heating were not 

measured. 

Peroxide values of fresh SBOs used in frying, of SBOs extracted from fresh 

Med bread cubes, and of SBOs extracted from stored fried bread cubes. 
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Table 2 (continued) 
Frying time (h) 

Analysis* Soybean 

oil 0 
Immediately 
after (Winer 

10-h 
heafincr 

20-h 
hentincj 

Polar 79%OA 1.9" 10.2" 47.5' 70.5" 

Compounds 65%OA 1.9" 12.6" 55.7^ 70.7" 

51%OA 1.6" 11.7" 53.9* 72.2" 

37%OA 1.8" 13.9" 53.8* 73.1" 

Control 2.0" 14.0" 67.4" 76.0" 

LL 2.2" 12.6" 62.5" 73.1" 

HunterLab 79%OA 75.7" 72.2' 63.3" 

Color 0/ 65%OA 75.5""* 73.5* 55.7* 

51%OA 75.7" 73.7* 52.8* 

37%OA 75.9" 74. r* 54.7* 

Control 75.0* 74.3"'* 54.8* 

LL 75.2"* 74.8" 59.8"* 

HunterLab 79%OA -2.4" -5.4"* 4.3* 

Color (a) 65%OA -2.4" -5.8* 15.7" 

51%OA -2.5" -5.8* 19.5" 

37%OA -2.6" -6.1* 16.8" 

Control -2.4" -5.6"* 16.3" 

LL -4.0* -4.4" 16.8" 

HunterLab 79%OA 6.8* 24.3" 39.1" 

Color (b) 65%OA 6.5* 21.2"* 36.0* 

51%OA 7.0* 20.0"* 34.4* 

37%OA 7.2* 18.5"*' 35.4* 

Control 6.4* 16.5*' 35.5* 

LL 12.0" 13.2' 35.4* 

PV 

Fresh Fresh 

PV SBOs bread Stored bread 

79%OA 0.08^ 5.45* 7.30^ 

65%OA 0.10^' 5.60* 11.3/ 

51%OA 0.12*' 5.60* 14.27^' 

37%OA 0.15" 5.80* 29.47"* 

Control 0.16" 6.60" 38.27" 

LL 0.14"* 6.00"* 22.03*' 
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ABSTRACT: The objective of this project was to determine the optimum percentage of 

oleic acid (OA) in soybean oils (SBO) for maximum flavor stability and quality in fried 

foods. Six SBO treatments included a control (conventional SBO, 21.5% OA) and a high-

oleic SBO (HO, 79% OA), which were tested as is. In addition, these two oils were blended 

in different ratios to make three blended oils containing 36.9%, 50.7%, and 64.7% OA, 

abbreviated as 37%OA, 51%OA, and 65%OA, respectively. Also, a low-linolenic (LL) SBO 

containing 1.4% linolenic acid and 25.3% OA was evaluated. White bread cubes of (8.19 

cnf) were fried in each of eighteen oils (6 treatments x 3 replicates). The fresh and stored 

bread cubes fried in 79%OA were second to the cubes fried in LL in overall flavor quality, 
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the weakest in intensity of stale, grassy, fishy, cardboard and burnt flavors by sensory 

evaluation, and contained the least amounts of hexanal, hexenal, t-2-heptenal, t,t-2,4-

nonadienal, and t,t-2,4-decadienal in volatile analysis. Other treatments were intermediate in 

these sensory and instrumental evaluations, as related to their OA concentration. In general, 

the results suggested that the overall flavor stability and eating quality of foods fried in the 

six oil treatments from the best to the poorest would be: 79%OA > LL, 65%-OA, 51%-OA, 

37%-OA, and control. 

KEY WORDS: Chemoff faces, fried bread cubes, frying oil stability, Aig/i-o/ezc acid 

.soybean oii, low-linolenic acid soybean oil, sensory evaluation, volatile compound analysis. 

Although soybean oil (SBO) has a good nutritional profile because of its high proportion of 

unsaturated FA, it has poor oxidative stability and is prone to flavor deterioration. The fatty 

acids, linoleic (18:2) and, especially, linolenic acid (18:3) in SBO, oxidize quickly and are 

the major contributors to the poor flavor stability of SBO (1, 2). Hydroperoxides formed by 

oxidation of 18:3 can break down to many undesirable flavor compounds, such as 2,4-

heptadienal, 2-butylfuran, 2- and/or 3-hexenal, 2-pentenal and butanal (3). Hydroperoxides 

formed by oxidation of 18:2 can break down to undesirable flavor compounds, such as 

hexanal, under mild conditions and 2,4-decadienal at high temperatures (3). 

To improve oxidative and flavor stability, SBO may be hydrogenated to reduce the 

concentration of PUFA (and increase the saturated FA); however, frarw fatty acids (fFA) are 

formed during this process. Because of health concerns over the presence of fFA in our diets 

(4, 5), lowering the 18:3 content to a level similar to that obtained by partial hydrogénation, 
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but without from formation, has been an objective of plant breeders. Soybean oils with 

different lowered levels of 18:3 have been developed and studied (6, 7). The flavor stability 

of SBO containing as low as 1.0% and 2.2% 18:3 was characterized by using a specialized 

program involving Chemoff faces in a previous.study (7). The results showed that the former 

oil was more stable than the later. However, the 18:3 is an essential FA and belongs to a 

group called omega-3 FA, which have been shown to reduce or help prevent certain chronic 

diseases (8). Reducing 18:3 to a minimal level may diminish the health benefits of SBO. 

Also important to oxidation, is that the oxidation rate of OA is much slower than that of the 

PUFA, 18:2 and 18:3 (9). At the same time, a diet high in monounsaturates may help to 

reduce raised levels of total plasma cholesterol without reducing the HDL-cholesterol level 

(10). Therefore, developing SBO with enhanced stability and retained health benefits (low 

but not minimal 18:3, elevated oleic acid, no fFA, and minimal saturated FA) would be very 

desirable. 

The overall objectives of this research, were to determine the optimum percentage of oleic 

acid (OA) in SBO for maximum flavor stability and eating quality in fried foods. Six oil 

treatments included a control (conventional SBO, 21.5% OA) and a high-oleic SBO (HO, 

79% OA), which were tested as is. In addition, these two oils were blended in different ratios 

to make three blended oils containing 36.9%, 50.7%, and 64.7% OA, abbreviated as 37%OA, 

51%OA, and 65%OA, respectively. Also, a low-linolenic (LL) SBO containing 1.4% 

linolenic acid and 25.3% OA was evaluated. A common belief is that blended oils are only as 

stable as the "poorest" oil present. Therefore, a secondary objective was to determine the 

impact of blending poor stability oil with high stability oil on the flavor and eating quality of 

the fried food. 
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MATERIALS AND METHODS 

SBOa and dgjfgM. Soybeans (G/ycine mo%) with high-oleic acid (HO, 79% OA), low-

linolenic acid (LL, 1.4% with 25.3% OA), and conventional (control, 21.3% OA) FA 

compositions, grown in summer 1998 in Iowa (weather zone 2), were obtained from Protein 

Technologies, Inc. (St. Louis, MO). The soybeans were crushed and the oils were hexane-

extracted, in triplicate, in the Pilot Plant of the Center for Crops Utilization Research, Iowa 

State University (ISU), Ames, Iowa, following a previously published method (11). All the 

oils were refined and bleached following AOCS official methods Ca 9a-52, and Cc 8a-52, 

respectively, (12), and deodorized following the procedure described by Stone and 

Hammond ( 13). Triplicate sets of each oil were refined, bleached, and deodorized separately. 

Citric acid (100 ppm) was added to the oils during the cool-down stage of deodorization 

before placement in high-density polyethylene (HDPE) plastic bottles. The bottles were 

sparged with nitrogen, then sealed and stored at -10°C until used for testing. 

Six SBO treatments were evaluated during frying, including the three SBO just mentioned 

(control, LL, and the 79%OA), plus three oil blends prepared as follows: 1) 75% of the 

control (by weight) and 25% of the HO (37%OA), 2) 50% of the control and 50% of the HO 

(51%OA), and 3) 25% of the control and 75% of the HO (65%OA). 

Frying. Eighteen frying sessions (three simultaneous sessions in one day) were carried 

out (six oil treatments evaluated in triplicate). At each frying session, 220 g of an oil 

treatment was weighed into a Teflon-coated 473-mL electric baby fryer (National Presto 

Industries Inc., Eau Claire, Wisconsin) and the oil was then heated to 185°C within 10 min. 

The oil was heated at 185 ± 5°C for 2.5 h before frying. Eight 5-piece batches of crust-free 
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(finely ground with a spatula) from each sample was placed in a 20-mL vial and sealed. A 2-

cm 50/30 um DVB/Carboxen/PDMS StableFlex fiber was inserted through the Teflon seal to 

trap the volatile compounds. The sealed sample was held at 40°C for 60 min, with the 

temperature maintained by a water bath on a hot plate. The extraction time was 60 min. The 

fiber was then removed from the vial and inserted into the injection port of a Hewlett Packard 

5890 Series n GC equipped with a HP-5 30 m x 0.32 mm x 0.25 um column. The GC was 

programmed as follows: injection temperature 250°C, detector temperature 270°C, initial 

temperature 30°C, initial time 3 min, rate 4°C/min until reaching 100°C, then 8°C/min until 

reaching a final temperature of 220°C, which was held for 5 min. After injection, the fiber 

remained in the injection port for desorption for 10 min before being used for the next 

extraction. Individual external standards were used to identify retention times for each flavor 

compound found in the bread cubes. For this procedure, a volume of 0.5 pi standard was 

injected into the fried bread cube (about 3.0 g, ground as previously discribed) with a syringe 

inserted through the Teflon seal. The vial was shaken and the rest of the steps were the same 

as just described. 

6YafMfz'ca/ a/zafyair. There were 6 treatments x 3 replicates. The SAS general linear model 

procedure (Program GLM) was used to analyze the data (18). Differences in mean values 

among treatments were determined by the least significant difference test at a = 0.05, unless 

listed otherwise. 

Statistical software S-plus 6.0.3 Release 2 for Microsoft Windows was used to draw the 

faces representing sensory characteristics of fried bread cubes. Another paper (7) described 

in detail the application of Chemoff faces to the data analysis of sensory evaluation of food 
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bread cubes (2.54 cm x 2.54 cm x 1.27 cm) were fried for 1 min per batch at 3-min intervals. 

Therefore, the actual frying of the cubes was completed within 0.5 h. The fried bread cubes 

were then drained and cooled to room temperature. Half of the bread cubes was used 

immediately for testing, including evaluating flavor characteristics by a trained sensory panel 

and instrumental volatile analysis by GC-SPME method. The other half of the bread cubes 

was stored, loosely covered, at 60°C in the dark for 3 days before sensory evaluation and 

volatile analysis by the same procedures used on fresh bread cubes. The oil remaining in the 

fryer was maintained at 185 ± 5°C for another 7 h for a total of 10 h heating on day 1, then 

cooled to 25°C. The oil was heated at 185 ± 5°C for another 10 h on day 2. 

Faffy oc;d compoaMon by GC, focop/igro/ confenM by Fatty acid compositions of 

SBO before frying were determined according to a method described by Hammond (14). The 

GC conditions were the same as described by S hen et al. (11). Tocopherol contents were 

determined according to AOCS Official Method Ce 8-89 (12). The HPLC conditions were 

the same as described elsewhere (6). 

.Sensory eWwafions of f&e /ried bread cwbes. Sensory evaluations were conducted 

according to AOCS Recommended Practice Cg 2-83 (12). A 12-member trained descriptive 

panel was used to evaluate overall flavor quality and individual flavor and off-flavor 

intensities of the fried bread cubes. All panelist candidates (17 members) were trained during 

four 1-h sessions. During training, panelists were given definitions for 10 flavor descriptors, 

including Med food, cardboard, waxy, stale, grassy, burnt, acrid, Ashy, rancid, and painty 

flavors (15). Standards for these 10 flavors, respectively, included fresh French fries from a 

local fast-food restaurant, water with cardboard soaked in it for 1 h, melted paraffin oil, 

potato chips aged 2 weeks at room temperature, fresh-cut green grass, burned Med bread 
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cubes, canola oil heated to 240°C for 5 min, canola oil heated to 190°C for 3 min, SBO with 

a PV of 18 meg/kg and canola oil kept at room temperature for 3 years (15). Candidates were 

asked to smell or taste the standards and to assign an intensity score. Also, candidates were 

given fresh SBO, SBO with a PV of 18 meg/kg, and canola oil kept at room temperature for 

3 years to smell and rank in order of painty intensity. Candidates who incorrectly ordered the 

intensity of painty flavor in these samples or could not detect flavors from the ten standards, 

after training, were omitted (5 out of 17 people) as panelists. 

For the actual tests, in each session, three bread cubes from three different treatments were 

presented to each panelist. The cubes were presented on paper plates, labeled with random, 

three-digit codes, and presented in random order to panelists. Panelists were asked to smell 

the cubes first, then bite into the bread to taste. To avoid tasting fatigue and flavor carry-over, 

panelists were given only three samples per session, and were asked to expectorate the 

sample after tasting and to rinse their mouths with distilled water between tasting samples. 

Evaluations were conducted in 12 individual, lighted booths. The breads were evaluated for 

overall flavor quality on a 10-point scale (10=excellent quality, 9 and 8=good, 7 and 6=fair, 5 

and 4=poor, 3, 2, and l=very poor) and for intensity of the 10 individual flavors listed in the 

previous paragraph on a 10-point scale (10=bland, 9=trace, 8=faint, 7=slight, 6=mild, 

5=moderate, 4=definite, 3=strong, 2=very strong, l=extreme). Overall flavor quality scores 

were calculated as the average of all overall quality scores given by the panelists. Intensity of 

a flavor was calculated as the average of the intensity scores by the panelists who detected 

the flavor in the sample. 

VWafiZe pro/He off/# bread cwbes by GC-3PME. The procedures by Jelen ef a/ (16) and 

Roberts ef a/ (17) were followed with some modifications as described. About 3.0 g bread 
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products, especially oils. Each sensory attribute of the fried bread was assigned to a facial 

feature (Table 1) enabling a cartoon of a face to be drawn by using the data obtained from the 

sensory panel. For example, the overall quality of the bread cubes from 10 to 1 determined 

the size of the face from large to small, the stale intensity from 10 to 1 determined the length 

of the nose from long to short, and so on. 

RESULTS AND DISCUSSION 

Faffy acid composition (TaWe 2). The control oil had much greater palmitic (16:0), 18:2, and 

18:3 acid concentrations than did the 79%OA. The blended treatments were intermediate in 

these FA levels, based on the ratios of each oil percent present. The LL was similar in FA 

composition to the control, except for its greatly reduced 18:3 level, and slightly increased 

18:1 and 18:2 levels. 

Tocopherols (Table 2). There were no differences in the concentrations of total tocopherol 

concentrations among 79.1%OA, control and LL SBO, and any of their blends (19). 

Sensory evaluations of the fried bread cubes (Table 3). The fresh and stored bread cubes 

of the LL treatment generally had the best overall flavor quality, the 79%OA the second, the 

control the worst, and the three blended treatments were intermediate, based on their OA 

concentradons, but the differences were not statistically significant. 

Among all fresh fried bread cubes, the 79%OA tended to have the weakest fishy, 

cardboard (same as 51960A and LL) and burnt (same as LL) flavors, was second weakest to 

LL (same as control) in stale flavor, and second weakest behind 65%OA and 37%OA (the 

same) in grassy flavor. LL tended to have the weakest rancid, cardboard (same as 51%OA 

and 79%OA), acrid and burnt (same as 79%OA) flavor, was second weakest after 65%OA 
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and 37%0A (the same) in grassy flavor, second weakest to 79%OA in Ashy flavor, and 

second weakest after 51%OA and 37%OA (the same) in painty flavor. In general, the LL 

fresh fried bread cubes had the best flavor characteristics among all fresh treatments followed 

by 79%OA. The control generally had the most intense grassy, fishy, acrid, and burnt flavors. 

In general, among the stored fried bread cubes, the 79%OA was the weakest in fried food 

(the same as control), stale (the same as control), grassy, and burnt flavors, was second 

weakest along with LL behind 51%OA in fishy flavor and second weakest behind 65%OA 

and LL (the same) in acrid flavors. The LL had the most intense fried food flavor, had the 

weakest waxy, cardboard (the same as 65%OA), and acrid (the same as 65%OA) flavors, 

was the same as 65%OA and second weakest behind 79%OA in stale flavor, was the same as 

79%OA and second weakest behind 51%OA in fishy, and was the same as control and 

79%OA and the second weakest behind 65%OA in painty flavors. The control tended to have 

the weakest fried food (the same as 79%OA), and the most intense grassy (the same as LL) 

and burnt flavors. 

The 18:3 in SBO is known as the major contributor of poor flavor stability (1. 2). The 

above results of fresh and stored bread cubes demonstrated that the greatly reduced 18:3 in 

LL SBO greatly elevated its flavor stability and quality over those of other treatments that 

contained more 18:3. The greatly increased 18:1 in 79%OA likely improved its flavor quality 

over that of other treatments as demonstrated by weaker stale, grassy, fishy, and cardboard 

flavors of the food fried in it. However, the fresh and stored cubes fried in 79%OA tended to 

have weaker fried food flavor than the blended oils that contained a fair amount of 18:2, the 

FA proposed to generate fried food flavor during frying (3). The inconsistency to this 

reasoning is that both the fresh control and the LL treatments, having the greatest amount of 
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18:2, have even weaker fried food flavor than the 79%OA treatment. After storage, the 

control continued to have the weakest fried food flavor, but the LL treatment tended to have 

the strongest fried food flavor among all stored treatments. Perhaps interactions among 

flavors when bread cubes were fresh and when the treatments were more prone to flavor 

deterioration decreased the intensity of fried food flavors to panelists. 

Chemoff faces were used to represent the overall sensory characteristics of the fresh and 

stored bread cubes (Fig 1). Each sensory attribute of the fried bread was assigned to a facial 

feature (Table 1) enabling a cartoon of a face to be drawn from the data obtained from the 

sensory panel. For example, the overall quality of the bread cubes from 10 to 1 determined 

the size of the face from large to small, respectively, the stale intensity from 10 to 1 

determined the length of the nose from long to short, respectively, and so on. Glancing at Fig 

1, one can see among the fresh fried bread cubes, the treatments of LL and 79%OA created 

similar overall sensory perceptions, but LL tended to have a slightly better overall quality 

score (larger face). The treatments of 65%OA, 51%OA and 37%OA had overall sensory 

perception similar to each other. The control tended to be most different in overall sensory 

perception from the other treatments. 

The trend of overall sensory characteristics of stored bread cubes were generally the same 

as that of the fresh bread cubes. The LL and 79%OA still were similar in overall sensory 

perception. The 65%OA, 51%OA and 37%OA were somewhat similar to each other, and the 

control was most different from other treatments in overall sensory perception. 

Vb/afzk pro/zk of f&e /rigd bread cubes by GC-SPME. Both the fresh and stored fried 

cubes of 79%OA treatment had significantly less hexenal and less t,t-2,4-heptadienal, 

although not significantly, than did those of control. The three blends were intermediate 
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between the 79%OA and control and were generally not different from each other for the 

concentration of these two volatiles. When fresh, the LL bread had significant less amount of 

hexenal than did that of control, significantly less amount of t,t-2,4-heptadienal than did that 

of the other treatments (Figure 2a). After storage, the LL bread had significant less amount of 

hexenal than did that of control and 65%OA, less but not significant amount of t,t-2,4-

heptadienal than did that of the other treatments (Figure 2b). Oxidation of 18:3 is known to 

produce 2,4-heptadienal and hexenal (3, 19). Fair positive correlation between the amounts 

of these two compounds in fried bread cubes and the concentration of 18:3 in the 

corresponding frying oils were found (Table 4). There was also fair positive correlation 

between the amount of hexenal in fresh fried bread cubes and the concentration of 18:2 in the 

corresponding frying oils. The fresh and stored control and LL bread cubes generally had 

more hexanal, t-2-heptenal, t,t-2,4-nonadienal, and t,t-2,4-decadienal than the 79%OA and 

the differences were generally significant, except for hexanal (Figure 2). The fresh and stored 

bread cubes of the three blends had concentrations of these compounds that were 

intermediate between 79%OA and the control and LL, and related to the 18:2 concentration 

of the corresponding frying oils. There were strong positive correlation coefficients between 

the production of these compounds in the fried bread cubes and the concentration of the 18:2 

of the frying oils, except for hexanal. This relationship can be explained by the finding that 

oxidation of 18:2 favored enals and dienals at higher temperatures. Although hexanal is a 

breakdown product of 18:2, its formation is favored under mild conditions, thus its poor 

correlations were not surprising (20, Table 4). The 79%OA tended to produce more nonanal 

and t-2-decenal than the other treatments and there were strong positive correlation between 
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the amounts of these two compounds in the fresh and stored fried bread cubes and the initial 

concentration of 18:1 in the corresponding frying oils (Table 4). 

The compounds noted in Figure 2 may play significant roles in flavor characteristics of 

food, because of their low thresholds and specific flavor characteristics (19, 21). Previous 

studies estimated the significance of some volatile compounds from the oxidation of soybean 

oil on food flavor, based on their concentrations and threshold values. Tra/», cij-2,4-

decadienal was the most flavorful followed by fra/w, fra/w-2,4-decadienal, frana, cir-2,4-

heptadienal, l-octen-3-ol, n-butanal, n-hexanal, frana, fra»J-2,4-heptadienal, 2-heptenal, n-

heptanal, n-nonanal, and 2-hexenal (22). In the current study, the greater amount of hexanal 

(fresh fried bread cubes), franj, fra»f-2,4-heptadienal (fresh), and hexenal (fresh and stored 

fried bread cubes) present in the control may have contributed to its strong grassy and fishy 

off-flavors. Conversely, the generally low amounts of these compounds may have resulted in 

grassy and fishy off-flavors in 79%OA and LL. The tendency for more t-2-heptenal and t,t-

2,4-decadienal to be present in the control and LL treatments may have caused slightly 

stronger rancid and fried food flavor in the fresh fried cubes. 

There were strong positive correlations between the amounts of nonanal and t-2-decenal 

and the 18:1 concentration, which may explain the stale, waxy-like off-flavor sometimes 

associated with high oleic acid SBO. Nonanal was previously described as tasting fruity and 

t-2 decenal was described as tasting plastic (23). However, it is still controversial about what 

compounds cause what particular flavors in fats and oils for two reasons. On one hand, it is 

difficult to agree on the common terms to describe the same odor or off-flavor by different 

researchers. On the other hand, little progress has been made in relating flavor descriptors 
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with individual volatile compounds in a natural mixture, such as food, due to additive and 

antagonistic interactions between volatile compounds (24). 

Overall, the 79%OA had better flavor stability and quality than did the control. But, the 

impact of 18:1 elevation on flavor stability was not as pronounced as that on its oxidative 

stability reported in a related paper as measured by peroxide value, FFA, conjugated dienoic 

acid, polar compound percentage, and viscosity of the frying oils (19). 

The greatly reduced 18:3 concentration in the LL treatment elevated its flavor stability and 

quality to be equal to or greater than that of the 79%OA, greater than that of the blends and 

much greater than that of the control. The impact of reducing 18:3 concentration on flavor 

stability was greater than that on the oxidative stability (19), likely because of the 

significance of the volatiles (trans, ?ra«s-2,4-heptadienal and hexenal) produced from 

breakdown of 18:3. In the oxidative stability tests, LL was only equivalent to 37%OA. These 

findings further demonstrated that 18:3 is a major contributor of flavor instability in SBO. 

The impact of blending poor stability oil with high stability oil on flavor quality and 

stability of the three blends was profound that the three blends had stronger off-flavor such as 

stale, fishy, and burnt than did those of 79%OA but also stronger favorable Med food flavor, 

which maybe explained by the fact that the blends had fair amounts of 18:1, 18:2 and 18:3 

fatty acids that oxidize to both favorable and unfavorable flavor compounds. A good balance 

of all these flavor compounds provides good flavor quality for the food. Therefore, a 

balanced fatty acid composition in the blends may result in good flavor quality and 

characteristics of the blends. 
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© © 0 © 0 0 
79%OA-F 65%OA-F 51%OA-F 37%OA-F Control-F LL-F 

Figure la. Sensory Characteristics of Fresh Fried Bread Cubes". 

79%OA-S 65%OA-S 51 %OA-S 37%OA-S Control-S LL-S 

Figure lb. Sensory Characteristics of Stored Fried Bread Cubes. 

"Refer to footnote a of Table 2 for treatment definitions of 79%OA, 65%OA, 

51%OA, 37%OA, Control, LL. The refers to fresh fried bread cubes and 

the "-S" refers to stored fried bread cubes. 
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Fig 2a. Volatile Compounds from Fresh Fried Bread* 
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Fig 2b. Volatile Compounds from Stored Fried Bread" 
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'For each volatile compound, values with label letters in common were not significantly different (p < 0.05). 
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Table 1 
Correspondence between the Assigned Facial Features and 
the Flavor Descriptors of the Fried Bread Cubes 
Dimension Flavor attribute Facial feature Numerical value assigned 

1 Overall quality Area of face 10-1 from sensory data 
2 Grassy Shape of face 10-1 from sensory data 
3 Waxy Length of nose 10-1 from sensory data 
4 Stale Location of mouth 10-1 from sensory data 
5 Fishy Curve of smile 10-1 from sensory data 
6 Rancid Width of mouth 10-1 from sensory data 
7 Painty Location of eyes 10-1 from sensory data 
8 Cardboard Separation of eyes 10-1 from sensory data 
9 Acrid Angle of eyes 10-1 from sensory data 
10 Burnt Shape of eyes 10-1 from sensory data 
11 - Width of eyes 5 
12 - Location of pupil 5 
13 - Location of eyebrow 5 

14 - Angle of eyebrow 5 
15 - Width of eyebrow 5 

° The sign means no flavor attribute was assigned to that facial feature and S-plus 
assumes a mid-value of "5" to that feature to draw a complete face. 
b Value of 10 (excellent/bland) to 1 (very poor/extremely strong) were given 

to each flavor characteristic of oils, according to the panelists' scores. 
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Table 2 
FA Composition (area %) and Tocopherols of Soybean Oils (SBO) 

Fatty Acid Methyl Esters Tocopherols (ug/g)* 

Treatments 
16:0 18:0 

(palmitic) (stearic) 
18:1 

(oleic) 
18:2 18:3 

(linoleic) (linolenic) 
a y 5 Total 

79%OA 6.9 3.8 79.0 6.5 3.8 113' 722" 495" 1329" 

65%OA 7.8 3.9 64.7 18.7 4.9 156^ 722" 457"'* 1335" 

51%OA 9.0 4.1 50.7 30.3 6.0 199' 722" 419*' 1340" 

37%OA 9.9 4.3 36.9 41.8 7.1 242* 723" 381^ 1346" 

Control 11.2 4.4 21.5 54.8 8.0 285" 723" 343^ 1352" 

LL 10.6 4.5 25.3 58.2 1.4 274" 731" 286' 1290" 

"79%OA = high oleic-acid (OA) SBO. The 65%OA, 51%OA, 37%OA = three blends 
containing % of OA indicated, achieved by blending 79%OA with the control SBO. 
LL = the low linolenic acid SBO. 
b Values in the same column for each test with supercripts in common were not significantly 
different (p < 0.05). 
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Table 3 
The Flavor Characteristics" of Fresh and Stored Fried Bread Cubes by Sensory Evaluations* 

Fried Bread Cube 

Treatments' 

Overall 
flavor 

quality' 

Fried 

food 
Stale Waxy Grassy Fishy Rancid Painty 

Card
board 

Acrid Burnt 

Fresh 79%-OA 6.6 4.1 9.7 9.3 9.7 9.3 8.8 9.0 9.5 8.3 9.3 

65%-OA 6.1 4.0 9.0 9.0 9.8 9.0 9.3 9.5 9.3 8.4 8.7 

51%-OA 6.0 3.8 9.0 9.4 9.5 8.8 8.9 9.6 9.5 9.0 8.6 

37%-OA 6.1 3.8 8.7 9.5 9.8 8.6 8.8 9.6 9.3 9.0 8.9 

Control 5.9 4.4 9.8 9.5 9.3 8.4 9.2 9.3 9.4 8.3 8.1 

LL 6.8 4.7 9.8 9.2 9.7 9.1 9.6 9.5 9.5 9.1 9.3 

Stored 79%-OA 6.5 5.0 9.3 9.3 10.0 9.4 9.0 9.2 8.9 9.5 9.3 

65%-OA 6.1 4.2 9.1 9.3 9.9 9.1 9.2 9.4 9.6 9.7 8.1 

51%-OA 6.0 4.6 8.8 9.2 9.8 9.8 9.3 9.1 9.5 9.5 8.2 

37%-OA 6.3 4.3 8.9 9.3 9.7 9.0 8.9 9.1 9.3 9.3 8.9 

Control 5.8 5.0 9.3 9.5 9.5 9.2 9.2 9.2 9.4 9.4 7.6 

LL 6.6 4.1 9.1 9.7 9.5 9.4 8.9 9.2 9.6 9.7 8.8 
a Values obtained from sensory panels. For overall flavor quality, 10 = excellent, 1 = very poor. 

For the intensity of individual flavors, 10 = bland, 1 = very strong. 
b Values in the same column were not significantly different (p < 0.05) for fresha nd stored 

treatments, respectively. 
c See footnote " of Table 2 for treatment abbreviations. 
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Table 4 
Correlation Between the Mean Amount of Individual Volatile Compounds 
from Fried Bread Cubes and the Mean Concentration of a Specific FA 

Volatile 
compound 

Fatty acid 
Fresh fried bread cubes Fresh fried bread cubes Volatile 

compound 
Fatty acid Correlation 

coefficient 
p value 

Correlation 
coefficient 

p value 

18:3 0.536 0.279 0.779 0.070 

Hexenal 18:2 0.785 0.064 0.496 0.317 

18:1 -0.835 0.039 -0.580 0.227 

18:3 0.807 0.051 0.462 0.354 
t,t-2,4-

18:2 -0.512 
Heptadienal 

18:2 -0.512 0.299 -0.209 0.693 

18:1 0.408 0.430 0.152 0.773 

18:3 0.269 0.615 0.174 0.742 

Hexanal 18:2 0.632 0.176 -0.274 0.601 

18:1 -0.653 0.159 0.251 0.630 

18:3 -0.069 0.887 0.338 0.520 

t-2-Heptenal 18:2 0.957 0.003 0.929 0.007 

18:1 -0.932 0.007 -0.953 0.003 

18:3 0.274 0.606 0.062 0.914 
t,t-2,4-

18:2 
Nonadienal 

18:2 0.904 0.013 0.941 0.005 

18:1 -0.920 0.009 -0.931 0.007 

18:3 0.141 0.797 -0.062 0.899 
t,t-2,4-

18:2 
Decadienal 

18:2 0.965 0.002 0.973 0.001 

18:1 -0.964 0.002 -0.949 0.004 

18:3 -0.332 0.526 -0.278 0.602 

Nonanal 18:2 -0.942 0.005 -0.927 0.008 

18:1 0.964 0.002 0.943 0.005 

18:3 -0.289 0.586 -0.065 0.912 

t-2-Decenal 18:2 -0.941 0.005 -0.954 0.003 

18:1 0.958 0.003 0.944 0.005 
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GENERAL CONCLUSIONS 

Overall, this study demonstrated 1): the importance of 18:3 concentration of the oil to 

its oxidative and flavor stability. Reducing 18:3 concentration can greatly improve flavor 

quality of the oil and of fried food in the oil. During storage under fluorescent light at both 

21°C and 32°C, the SBO with ultra-low-18:3 concentration (1.0%, ULSBO) generally had 

greater oxidative stability than did SBO with low-18:3 concentration (2.2%, LLSBO). 

Although the ULSBO initially had significantly greater initial oxidation (greater peroxide 

values and poorer (lower) sensory scores for overall flavor quality) than did LLSBO, 

significant differences disappeared with storage and the ULSBO was indeed more stable than 

LLSBO. Among the six oil treatments used in frying, the low-linolenic (LL) had oxidative 

stability slightly better than the conventional SBO (Control) and equivalent to that of the 

37%-OA SBO (blended SBO containing 37% oleic acid), but the flavor quality of the food 

fried in the LL was the best; 

2): elevating OA in vegetable oil greatly improves its oxidative stability. However, 

the effect on the flavor quality was not as obvious as that on the oxidative stability. Among 

the six oil treatments used in frying, the 79%-OA (natural HO SBO with 79% olec acid) was 

the most oxidatively stable one, but the food fried in it had significantly greater amount of 

nonanal and f-2-decenal than other treatment. Hammond (personal communication) indicated 

that the contribution of these two compounds to the unique "stale", "waxy" off-flavor 

sometimes associated with HO SBO may have been overlooked. Sensory evaluation of the 
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bread cubes fried in the 79%-OA SBO was weak in fried food flavor and it was not the best 

for overall flavor quality as it was the most oxidatively stable one among the six treatments. 

In the future, it will be interesting and important to study the performance of the low-

linolenic and high-oleic SBO in commercial applications, as it is always the initial purpose of 

developing new soybeans with enhanced properties. 
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